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Thomson constructs apparatus for
analysis of positive rays.




BETTER WAYS TO MAKE IONS

nterest in the ionization potential of the elements, the photoelectric effect and the
formation of X-rays were all intertwined in physics research beginning in the late
19th century. Obviously, the gas discharge method of ionization did not lend itself to
such studies! While a variety of experiments were used to investigate ionization poten-
tials, the first to utilize a mass spectrometer, albeit a crude one, was performed by

Smyth in 1922 working as a National Research Fellow in Aston’s lab®. With this appa-

ratus, he was able to determine the first and second ionization potentials of mercury.

Smyth’s Simple ‘Mass
Spectrometer’

The electrically heated filament at F provided a
source of electrons and the voltages on the grids
at G1 and G2 controlled their energy in the cross
section of the apparatus. The vertical apparatus
supplied a constant, low velocity stream of mer-
cury atoms, entering at A and passing between

EARLY ADOPTERS OF ANALYTICAL
MASS SPECTROMETRY

B eginning around 1930, the development of more sensitive and higher
resolving power mass analyzers was pursued in labs around the world.

Physicists remained the dominant
users and pursued the development
of better instruments for the study
of the elements and their isotopes.
A core group of physicists pursued
the development and application of
mass spectrometry to problems of
interest in the physics community.

A number of hardy souls outside of
the physics community decided to

Investigator Affiliation

Aston Cambridge UK
Bainbridge Bartold Research Foundation of the

Franklin Institute, Harvard University
Bleakney University of Minnesota, Princeton University

Dempster University of Chicago
Henneberg Berlin

Mattauch University of Vienna

Mohler National Bureau of Standards
Tate University of Minnesota
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SYNTHESIS OF PROGRESS

he most important figure in the evolution of mass spectrometry from a cantanker-
ous tool used primarily by physicists investigating the elements and their isotopes

to an analytical tool for chemists was Alfred Otto Carl Nier. Earning both Bachelors
and Masters degrees in Electrical Engineering at the University of Minnesota, he then
turned to the Physics Department for his doctorate which he obtained in 1936. After
completing a National Research Council Fellowship at Harvard in 1938; Nier returned
to the Physics Department at Minnesota to begin his academic career. Faced with
limited resources compared to those available to him at Harvard, Nier focused on cre-
ating small, rugged, inexpensive instruments that consumed less power and were easy

to fabricate.
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Nier’s 60° magnetic sector instrument re-
quired a smaller magnet, simpler electronics,
and included all of the recent advances in
electron bombardment ionization in his ion
source. In his 1940 publication®? he asks the

the grids where they would undergo ionization.
Positive mercury ions were accelerated by a volt-
age on the slit system S1 and $2. A magnet
located at M directed ions to the detector, P,
behind slit S3. By varying the magnetic field
singly, doubly, and triply charged ions could be
observed depending upon the electron energy in
the ionization region.

Walker Bleakney, working under John Tate at the University of Minnesota in 1929, was
charged with revisiting the ionization potentials of mercury®®. The novel idea in his ion
source was to use a stream of electrons generated by an electrically heated filament and
accelerated through a potential difference, just as Smyth had done, BUT collimated by

a co-linear magnetic field. The same magnetic field was then used to mass analyze the
mercury ions. This instrument was not specifically designed as an analytical mass
spectrometer, but in a later s N
publication?®' Bleakney described
a modified version of this instru-
ment that he refers to as a “mass
spectrograph” for the study of the
lonization potential of molecular
hydrogen.

While this mass analyzer design
saw limited use, the production
of ions from gases by an electron

Tsometric drawing of the apparatus with sections cut away to show the interior.
All dimensions are to scale except the widths of the slits which are 1.0, 0.2, and
0.5 mm for 5. Ss and Ss respectively.

- - . Rittenberg Columbia University
app]y the analytlcal capabllltles of Schoenheimer University of Freiburg, Columbia University
- . Smythe California Institute of Technology
mass spectrometry in their re- Taylor California Institute of Technology

search. They were mostly biolo- Urey
gists, drawn to the idea that stable i

Columbia University
Columbia University

isotopes could be used to track metabolic processes in living oganisms; an ap-
proach preferred over the use of radioactive isotopes.

These early adopters did not have the luxury of purchasing instrumentation

from a company. They relied in large part on the good will of their colleagues

in nearby, and not so nearby, physics departments. In this letter, Harold

Urey, having won the Nobel Prize in
Chemistry in 1934 is requesting help
with his instruments from Al Nier.

For the most part, their physicist col-
leagues responded favorably to these
requests for help, but not without
asking for some financial remuneration.
In August 1942, Nier sent Urey a bill for
“the construction of three mass spec-
trometer tubes” in the amount of $257.
Most of that was for 100 hours of ma-
chinist time at $1.50 per hour. The
Minnesota physics department levied a
10% overhead charge of $15.00 for the

machinist’s time! e
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reader to compare the carbon dioxide spec-
trum obtained with this instrument to that
obtained with the instrument he used at

-] L] L] .
waer Lty Har\«'a.rd that was much more expensive and
complicated.
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Nier used his simple 60° instru- ot . [
ment to conduct a series of experi-
ments with his colleague at Iowa & [ g
State University, Harland Wood, § et 3| e
investigating the metabolic path- § g it
ways of carbon dioxide in bacteria. L\m ]|
This collaboration resulted in more Lol b 1A | o j - J«, bt | S|
than a dozen publications in the Hous s e . AT Mase: tanTs i
“60 degree Minnesota instrument “180 degree Harvard instrument
span of a few years.

In 1943, Nier was 'drafted' into the Manhattan Project and charged with the task of
analyzing contaminants in the process stream of the gaseous diffusion plant at Oak
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The details of the process
stream mass spectrometer are
shown. This information wasn’t
published until 1948 since all
work on the Manhattan Project
was held in strictest secrecy
during the war years.

Fas wem

Detall of Recording Mass Spectrometer Tube

ier also created the helium leak detector while working at the dif-

fusion plant. Air and moisture had to be avoided at all costs in
the working parts of the diffusion system, otherwise reactions with ura-
nium hexafluoride would plug the pores of the diffusion membranes.
His helium leak checking method had sufficient sensitivity to find the
smallest and most damaging leaks. His interest in helium piqued as a
result of this work, he proceeded to publish 20 papers on the element
and its isotopes in the atmosphere, stratosphere, and extraterrestrial
matter from the end of the Manhattan Project until 1994!

By synthesizing critical developments in the field, such as the simple
magnetic sector analyzer and the electron bombardment ion source,
along with technical developments in vacuum systems and electronics,
he used his superior command of electronic circuits to build easy to use,
reliable instruments with high sensitivity and improved resolving
power. Through Nier’s efforts, it was clear by the beginning of the ‘40s
that mass spectrometry was poised
to become the analytical tool for the
chemist that Thomson had long ago
envisioned. It only awaited a daring
entrepreneur.

Alfred Otto Carl Nier, ca 1940, at the

console of his 60° instrument. Here, he
is preparing to manually record a mass
spectrum point-by-point in the manner
of the spectra of carbon dioxide shown

An electrically heated filament, F, provided a source of electrons L me N N 3 ) . - : to the left.
beam collimated by a magnetic that were accelerated through the ionization region, A, to the elec- £ & % Ridge. He adapted his 60° design to the specific requirements of that task. Two in-
field was quickly adopted by podie st £ Yons were acoalsnated iy voltagesion the plates B and G /N struments were required at each of the fifty stages in the diffusion plant®'; one on-line
i with slits S1 and S2. The whole apparatus was placed in the core Y, [*//4/ A N
other workers in the field. of a solenoid providing the magnetic field H. Thus, ions followed a 4 and the other ready to go on-line if needed.
circular path through slit S3 to the collector K. _/ ':0' "ij"'ii‘“’""".-}' of
eavy hydrogen
-
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International Committee on
Chemical Elements issues
report on atomic weights

Aston publishes the 2nd
Edition of "Isotopes”

Aston publishes the 1st
Edition of "Isotopes”

Mohler begins photoioniza-
tion studies at National
Bureau of Standards

Bleakney reports on ‘A New
Method of Positive Ray
Analysis . ..’

Atanasoff reports on
"The Dielectric Constant
of Helium’

Bainbridge issued patent
for 'Photoelectric Tubes’

Bleakney at Minnesota
uses his ‘'new mass spec-
trograph’ to study the
ionization potential of
molecular hydrogen

Dempster publishes ‘Table of
MNuclear Transformations’

Chadwick discovers
the neutron

Urey publishes 'A Name
and Symbol for H2’

Bainbridge publishes Schoenheimmer & Rittenberg

'Equivalence of Mass and publish series of articles on

Energy’ ‘Deuterium as an Indicator in
the Study of Intermediary
Metabolism’

Nier completes National
Research Council Fel-

Clifford Berry completes
his undergraduate study

Mattauch publishes
'A Double-Focusing

Mass Spectrograph lowship at Harvard and in Electrical Engineering
and the Masses of returns to Minnesota at lowa State College
N'5 and 08’
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