

Update of Qualitative Analysis Considerations in GC-MS(/MS) Steven J. Lehotay

United States Department of Agriculture Agricultural Research Service Wyndmoor, PA; USA

Definitions

 Indication = result of a screening method (*i.e.* "presumed" positive or negative)

 Determination = result from an analytical quantitative method (e.g. GC/PFPD, LC/UV)

 Identification = qualitative result from a highly selective method (e.g. GC-MS, LC-MSⁿ)

 Confirmation = result from 2 or more independent analyses in agreement (ideally, one of which uses a different chemical mechanism or approach)

Old School Approach

0) <u>Screening</u>: Field testing (*e.g.*, bioassay or immunoassay) – narrow scope

1) <u>Quantification</u>: Official determinative method (*e.g.* GC-NPD/ECD) – inefficient

2) <u>Identification/Confirmation</u>: Qualitative analysis using GC-/MS(-MS) – wasteful

New School Approach

A) <u>Screening/Identification</u>: Rapid testing by MS-based method – broad scope; (non?)targeted identification?

B) <u>Quantification/Confirmation</u>: Official determinative method (GC-MS/MS?) – targeted positives or elucidative approach(es)

 Rely on confirmation to eliminate false positives, but presumptive positives must be within reason

Factors to Consider in Identification

- Chromatographic t_R and peak shape
- Adequate S/N ratio
- Multiple detector and elemental information
- Characterization of blanks and carry-over
- Presence of molecular ion
- Isotope pattern and nitrogen rule
- Comparison with reference standard
- MS fragmentation pattern makes sense
- Result makes analytical sense

USDA-FSIS GC-MS/MS Identification Criteria

- **1.** Retention time (t_R) is within \pm 0.1 min of average t_R and peak shape matches that of reference std
- **2.** t_R and peak shape of qualifier ion(s) matches those of the quantification ion
- 3. 2 qualifier ions ≤|20%| or 1 qualifier ion ≤|10%| of avg. ion ratio from contemporaneous reference stds
- **4.** Absence of positive findings in known blanks
- 5. Signal > 1/2 "tolerance" calibration standards in matrix
- 6. Rate of false positives ≤5% (and false negatives <10%)
- 7. The ion transitions used make structural sense

Ion Ratio Criteria in 2002/657/EC (EU)

Acceptable Diff. vs. Ref.
<u>API-MS</u>
±20% RSD
±25% RSD
±30% RSD
±50% RSD
FSIS (1 ion) (2 ions)
60% - 80% 50% - 90%
14% - 34% 4% - 44%
% 3%-23% >0%-33%
>0% - 14% >0% - 24%

Re

* 2 ion transitions needed to achieve 3 ident. points in MS/MS

Guidelines in SANCO/12571/2013

Rel. Abundance	Acceptable Diff. vs. Ref.	
<u>vs. Base Peak</u>	<u>EI-MS (≥3* ions)</u>	MS/MS (≥2 ions)
>50%	±10% RSD	±30% RSD
>20-50%	±15% RSD	±30% RSD
>10-20%	±20% RSD	±30% RSD
\leq 10%	±50% RSD	±30% RSD
<u>Ref. Ratio</u>	EI-MS Range*	<u>MS/MS</u>
70%	63 – 77%	49 - 91%
24%	20.4 - 27.6%	16.8 - 31.2%
12%	9.6 - 14.4%	8.4 - 15.6%
4%	2 – 6%	2.8-6.2%

* \geq 2 ions in high resolution MS with mass accuracy \leq 5 ppm

Bottom Line

There are many complicated opinions of "good enough" criteria to meet MS-based identification standards

But they are all based on generalizations, not scientific assessments at all actual conditions

The bottom line is rates of false pos/neg

If analytical conditions shown to meet <5% false results in extensive validation (multi-matrix, multi-level, blind), then it should be acceptable

Rely on Orthogonal Confirmation Methods