Photoionization Interest Group Workshop Report

"Future needs of photoionization mass spectrometry for complex mixture analysis"

71th ASMS Conference on Mass Spectrometry and Allied Topics, Houston, TX

June 7, 2023

Organized by:

Luke Hanley (University of Illinois at Chicago, United States) Christopher Rüger (University of Rostock, Germany)

Approx. Attendance: 20

The workshop began with the workshop chair, Christopher Rüger, presenting some introductory slides on complex mixtures, the diversity of ionization schemes and photoionization in general. Three experts were chosen to present a part of their research work and to lead the discussion on a diversity of topics in photoionization mass spectrometry. Particularly young scientists have been considered to give them an ideal platform for presenting their work with a strong interactive discussion character.

- **Prof. Janne Jänis** from the University of Eastern Finland (Joensuu, Finland) presented on the "Importance of photoionization in "biopetroleomics" and related studies". After briefly recapturing the basics of ionization coverage (chemical space: polarity versus molecular weight) and typical ionization reactions involved in (+/-)APPI, Prof. Janne outlined the usage of APPI for the analysis of highly complex biomass-based pyrolysis oils. The complementary character in comparison to ESI was pointed out utilizing common petroleomics data visualization strategies, such as O/C versus H/C (Van-Krevelen) diagrams. Moreover, he referred to the usage of APCI as an additional complementary technique for covering a larger chemical space. For APPI the high potential for application in (plant) metabolomics, *e.g.*, conifer needle extracts, was discussed.
- Patrick Müller, a PhD student from the University of Geneva (Geneva, Finland) from the group
 of Prof. Gérard Hopfgartner, presented on "Determining Double Bond Positions of Lipids using
 Supercritical Fluid Chromatography Photoionization Mass Spectrometry and Collision-Induced
 Dissociation of Radical Cations". In his talk, he nicely showed the localization of double bond
 positions in lipids using collision-induced dissociation of radical cations generated by (+)APPI.
 Hereby, chlorobenzene has been used as a dopant in an LC-MS setup. This rule-based de-novo
 structural elucidation or library matching is a powerful tool for complex mixture analysis and
 enlarges the method toolbox for APPI-MS.
- Ole Tiemann, a PhD student from the University of Rostock (Rostock, Germany) from the group
 of Prof. Ralf Zimmermann, presented the "Detailed comparison of Xenon APPI (9.6/8.4 eV),
 Krypton APPI (10.6/10.0 eV), APCI, and APLI (266 nm) for gas chromatography high resolution
 mass spectrometry of standards and complex mixtures". He presented the utilization of a
 Xenon-filled discharge lamp for APPI and pointed out similarities and differences compared to
 the established Krypton-filled discharge lamp APPI sources as well as APCI (corona-needle) and
 APLI (Nd:YAG 4th harmonic at 266 nm, 4.66 eV). Exemplarily, Xe-APPI and APLI offer the benefit

of not ionizing most impurities and column blood found in gas chromatography hyphenation, giving a clear background with low chemical noise, particularly useful for trace analysis or unknown search. His main proposition is to combine different photoionization schemes for complex mixture analysis.

As a conclusion, photoionization – with a strong focus on atmospheric pressure photoionization – offers a large variety of analytical capabilities in mass spectrometry. Method development, such as fragmentation on radical cations (rarely observed in ESI), involvement of ion chemistry and dopant reactions as well as adapting light sources (Xe-APPI, lasers), is far from finished and will become even more important facing new analytical challenges in environmental sciences, 'omics and energy transition. Ideally, data from multiple ionization schemes need to be combined for analysis of these complex molecular systems, which also involves established techniques, such as ESI and APCI.

The workshop started later due to a delay in a previous assembly meeting. Despite the low number of attendees, a good discussion was established, and the full timeframe has been used. Follow-up discussions in smaller groups have then continued even afterward. Next year's workshop will be organized by Lukas Hanley and Sven Ehlert (serving again as a volunteer from 2024).

Interest Group: Photoionization Mass Spectrometry

09 Workshop - What are the future needs of photoionization mass spectrometry for complex mixture analysis?

Presiding: Luke Hanley, Christopher P. Rüger

71st ASMS Conference on Mass Spectrometry and Allied Topics June 4 - 8, 2023, Houston, Texas

Workshop Lineup and Schedule

Prof. Janne Jänis University of Eastern Finland Joensuu, Finland

Patrick Müller University of Geneva Geneva, Switzerland

Ole Tiemann University of Rostock Rostock, Germany

What are Complex Mixtures?

Creating Ions – Main Pathways

Simplified "ionization tree" – "root" technique given in brown and selected concepts based on them in green

Alberici et al., Anal Bionanal Chem, 2010, 398:265–294

Basic Physical Concepts and Schemes for Ionization

A) Spray Ionization

B) Desorption Ionization

C) Chemical Ionization

D)Electron/Photon Ionization

Primary Requirement for MS - Ions

Creating Ions – Main Physicochemical Pathways

	Molecular Ionization			
Atomic Ionization	Sample Phase	Mode	Pressure ^a	
Thermal ionization	Gas phase	Electron ionization	HV	
Spark source	1	Chemical ionization (CI)	IV	
Glow discharge		Photoionization (PI)	HV	
Inductively coupled plasma		Field ionization	HV	
Resonance ionization		Metastable atom bombardment	HV	
	Solution phase	Thermospray	LV	
	*	Atmospheric-pressure CI	AP	
		Atmospheric-pressure PI	AP	
		Electrospray	AP	
	Solid phase	Plasma desorption	HV	
		Field desorption	HV	
		Secondary-ion MS	HV	
		Fast atom bombardment	HV	
		Matrix-assisted laser desorption	HV	

^a HV, high vacuum; IV, intermediate vacuum; LV, low vacuum; AP, atmospheric pressure.

Jürgen H- Gross, *Mass Spectrometry – A Textbook*, **2017**, Spinger, ISBN *978-3-319-54398-7*

Structuring ionization concepts in MS with main physicochemical background

Chen et al., JASMS, 209, 1947-1963

Ionization Techniques

Timeline and the Ambient Ionization Techniques "Zoo"

Ionization Techniques

Trying to get an overview of existing ionization concepts...

	Hard Gas	Phase Ionization	
Accelerator Mass Spectrom	etry (AMS)	h	
	Electron	Ionization (EI)	
Spark Source Thermal Ionization (TI) Glow Discharge (GD) Inductively-Coupled Plasma (ICP)		Chemical Ionization (CI) Atmospheric Pressure Chemical Ionization (APCI) Atmospheric Pressure Photoionization (APPI) Field Ionization (FI)	
Elements or Isotopes	Intact	Small Molecules	Intact Large Molecules
	Secondary Ion	Mass Spectrometry (SIMS))
		Laser Desorption/lor	nization (LDI)
Structuring here according to		Fast Atom Bombardment (FAB) Liquid Secondary Ion Mass Spectrometry (LSIMS)	
 energy uptake ("hardness") 	Field Desorption (FD)		
 molecular/analyte size/type 		Matrix-Assisted Laser Desorption/Ionization (MALD)	
		ł	Electrospray Ionization (ESI)
Jürgen H- Gross, Mass Spectrometry – A Textbook,	Soft Condense	ed Phase Ionization	

Jürgen H- Gross, Mass Spectrome 2017, Spinger, ISBN 978-3-319-54398-7

Photoionization

Soft ionization of analytes by photon irradiation

hv M → M+.

at atmospheric pressure

Most often divided in:

- atmospheric pressure photo ionization utilizing rare gas discharge lamps (APPI using Krypton lamps, 10/10.6 eV)
- atmospheric pressure laser ionization (APLI, most often 248/266 nm)

at reduced pressure / vacuum

Most often divided in:

- single-photon ionization (SPI) using VUV laser, synchrotron radiation or discharge lamps
- resonance-enhanced multiphoton ionization (REMPI)

no matrix effects almost no fragmentation

F2-Laser (157nm) 7.9eV

Prof. Janne Jänis University of Eastern Finland Joensuu, Finland

What are the future needs of photoionization mass spectrometry for complex mixture analysis?

Patrick Müller University of Geneva Geneva, Switzerland

Ole Tiemann University of Rostock Rostock, Germany

