Bioinformatics for MS June $6^{\text {th }}, 2023$

From data to biology: using -omics datasets to generate an unbiased hypothesis

Katarzyna Kulej
Memorial Sloan Kettering Cancer Center, New York

Why do we do it?

- We all produce large amounts of data, and we rarely have time to make sense of them
- The first instinct in proteomics is to calculate the fold change of our proteins between condition A vs condition B , and expect that this unravels the molecular mechanisms of our system
- While there is nothing wrong in doing so, we forget that there are many more perspectives we can observe our data from. These can help us decipher unexpected properties of our sample
- We will initially discuss these perspectives, and then
 the O'Donovan lab will present a specific application in metabolomics

Quantitative Dimensions in Proteomics

protein abundance

protein rank

Protein rank plot from highest to lowest abundant protein, illustrating the dynamic range

Host nascent DNA-bound proteome (MOCK)

\underline{I} solation of Proteins \underline{O} n $\underline{\text { Nascent }} \underline{\text { D }} N \mathrm{~A}$ (iPOND)

- Dynamic range issues
- Abundant proteins might be better biomarkers
- Abundance plots can be used to differentiate sample types (e.g., highly specialized cells have very few very abundant proteins, while stem cells have lots of medium abundant proteins)

protein abundance

Protein absolute intensity

Total mouse proteome

Biofluid proteome

Cerebrospinal fluid (CSF) proteins ranked according to their abundance measured by various techniques.

protein fold change

$\log _{2}$ fold change

Protein fold change

- It is the most intuitive dimension
- To treat carefully: without p-value it might be meaningless, and it does not provide a perspective of how much protein there is

P-value and its meaning

To consult the statistician after an experiment is finished is often merely to ask him to conduct a postmortem examination. He can perhaps say what the experiment died of.

- R.A. Fisher

The first principle is that you must not fool yourself, and you are the easiest person to fool.

- Richard P. Feynman
\square Remember, a P-value is not a measure of how right you are or how important a difference is. Instead, think of it as a measure of surprise.
\square If you assume your medication is ineffective and there is no reason other than luck for the two groups to differ, then the smaller the p-value, the more surprising and lucky your results are - or your assumption is wrong, and the medication truly works.

P-value and its meaning

To consult the statistician after an experiment is finished is often merely to ask him to conduct a postmortem examination. He can perhaps say what the experiment died of.

- R.A. Fisher

The first principle is that you must not fool yourself, and you are the easiest person to fool.

- Richard P. Feynman
- The P-value reports a probabilistic significance, not a biological one.

I In other words, statistical significance does not mean your result has any practical significance.

The choice of $p<0.05$ as significant is not because of any special logical or statistical reasons but it has become a scientific convention through decades of common use.

First (obvious) examples of data analysis by combining quantitative dimensions

protein fold change

Volcano plots showing results of comparisons between two conditions (A vs B).

Fold change AND p-value

The thresholds for calling a protein differentially abundant can be defined by one of two methods:

Use the absolute/relative

 intensity!- You can find biomarkers
- You can prioritize candidates
- You can interpret protein hindrance

Abundance AND fold change AND p-value

Infection of host cells (Mock) with Adenovirus type-5 (Ad5)

Less obvious quantitative dimensions

protein PTMs

active

- Protein PTMs have their own abundance, independent from protein abundance
- PTM stoichiometry can be used to assess activity of the enzymes that catalyze them, and thus predict biological targets

Protein post-translational modifications (PTMs)

DNAPK - DNA-dependent protein kinase catalytic subunit

MSK1 - Ribosomal protein S6 kinase alpha-5

Kinase substrate motif

protein PTMs

Confidence in PTM
localization is also quantitative, and it can help to prioritize targets

Kinase substrate motif

DNAPK - DNA-dependent protein kinase catalytic subunit

Protein post-translational modifications (PTMs)

Interactive Tree Of Life

protein PTMs

Interactive Tree Of Life https://itol.embl.de/

Welcome to iTOL v6
Interactive Tree Of Life is an online tool for the display, annotation and management of
phylogenetic and other trees.

Manage and visualize your trees directly in the browser, and annotate them with various datasets.

Manage
\qquad projects and access them from any browser.
Simply drag and drop multiple tree files onto
project to upload them all at once.

Annotate 19 datasest types. Full control over branch colors wonts, sizes and styles. Check our gallery af user created trees.

Export Create high quality tree figures for your Get export of what is displayed on the screen. Export into various vector or bitmap formats.

protein PTMs

Already reported PTMs

Uniprot: Experimental/putative PTMs PhosphoELM: Curated database of validated ph-sites PhosphoSitePlus: Experimentally reported ph-, ac- and ub-sites OGlycBase: Experimentally reported glycosylation sites HPRD: Experimentally reported human PTMs dbPTM: Compendium of experimental and putative PTMs from sources above
PTMcode: Focus on PTM crosstalk
ProteomicsDB: multi-omics and multi-organism resource HPRD: domain architecture, post-translational modifications, interaction networks and disease association for each protein in the human proteome.
PhosphoNetworks: a database for human phosphorylation networks

Tools for PTM assignment and quantification

PTM prediction

NetPhos: Prediction of ph-sites based on the learning model NetPhosK: Prediction of kinase-specific ph-sites
Scansite: Motifs likely to be phosphorylated by specific kinases
LysAcet: Prediction of acetylation sites
PTMfunc: Repository of functional predictions of PTMs
iGPS: prediction of site-specific kinase-substrate relations

Related kinases/transferases

KinomeXplorer: Predict kinase-substrate interactions (NetworKIN + NetPhorest)
PKIS: Computational identification of protein kinases
PSEA: Enrichment analysis for prediction of kinases

Grouping trends with unsupervised clustering (e.g., fuzzy c-means)

Time course of HSV-1 infection

Cluster Gene Ontology (GO) Analysis

Other quantitative dimensions that assist the interpretation of protein interactions and functions
protein co-regulation

Co-regulation to identify genetic interactions

Ad5 - Adenovirus type-5
HSV - Herpes Simplex Virus VACV - Vaccinia virus

[^0]

Co-regulation to identify genetic interactions

CoExpresso

Chalabi M.H., et al. (2019), BMC Bioinformatics.

- The analysis is based on protein abundance levels from ProteomicsDB. Correlations are shown as clustered heatmaps and as graphs to reveal potential co-regulated protein subgroups.
"-" biotin; "+" biotin

protein-protein affinity

Protein-protein interaction network

Common network types encountered in proteomics studies:

Crytoscape

hierarchical

semantic pathway

In proteomics, most often, the nodes represent proteins, e.g.

- color of the node represents the fold change enrichment
- size - the p-value or abundance
- shape - the functional enrichments (e.g., Gene Ontology)

The edges usually represent one of three types of information:

- physical interaction or proximity (interactomics),
- phenotypic similarity (profiling),
- shared annotations (e.g., Gene Ontology)

protein-protein affinity

Protein-protein interaction network

Common network types encountered in proteomics studies:
crictoscape
number

hierarchical

semantic pathway

Different tools can be used to create networks depending on the degree of complexity and customization required e.g.,:

Databases for protein-protein interaction networks:

- STRING: edges (connections) given by scores
- BioGRID: curated from publications (nearly complete for yeast)
- KEGG: more focused on pathways and metabolism
- Reactome: curated annotation of pathways on a diverse set of topics
- NextProt: an integrated collection of interactions between human proteins
- IntAct: curation from literature and submitted information

Databases for protein-PTMs interaction networks:

- PhosphoSitePlus: Eexperimentally reported ph-, ac- and ub-sites
- UniProt: experimental/putative PTMs
- PhosphoPath: visualization and analysis of quantitative proteome and phosphoproteome datasets
- MetaCore: data-mining and pathway analysis
- Ingenuity IPA: a tool to integrate and understand complex 'omics data

protein-protein affinity

Protein-protein interaction network

Common network types encountered in proteomics studies:

Protein-protein affinity is mostly performed by:

Immunoprecipitation

APEXIPs

protein-protein affinity
protein activity (function)

Interaction AND activity

SWI/SNF complex

protein-protein affinity

protein activity (function)

Interaction AND activity

SWI/SNF complex

protein-protein affinity

protein activity (function)
Protein domains: adding structural details to protein networks

Motifs/domains

- Prosite: Biologically significant sites, patterns and profiles Pfam: Collection of protein domain families Blocks: Database of conserved protein "blocks" (short sequences)
PRINTS: Protein fingerprints (groups of conserved motifs)
- InterPro: protein sequence analysis \& classification - searches several databases
- ScanProsite: consists of documentation entries describing protein domains, families and functional sites as well as associated patterns and profiles to identify them
- SMART: (a Simple Modular Architecture Research Tool) allows the identification and annotation of genetically mobile domains and the analysis of domain architectures.

Membrane binding domains e.g.,

- C1,
- PX
- C2,
- ENTH,
- PH,
- and BAR domains

The transport of molecules between the nucleus and the cytosol e.g.,

- nuclear localization signals (NLSs)
- export peptide signal
\square import peptide signal

Protein secretion e.g.,

- specific peptide tags

Protein PTMs binding domains e.g.,

- 14-3-3,
- WW domains,
- LRR domains of F-box proteins,
- FHA domains
- Bromodomains
- methyl-CpG-binding domain (MBD)

Protein PTMs AND translocation

Upon phosphorylation translocating to the cytosol

Upon phosphorylation
translocating to the membrane

Upon dephosphorylation translocating to the cytosol

Upon dephosphorylation

 translocating to the membrane
stimulation

no stimulation

stimulation

phosphorylation

Conclusions

- We hope we provided an original overview of ideas for experimental design
- Data produced by mass spectrometry provide perspectives beyond fold changes
- Exploiting labeling, time series, modifications and large resources of available data can be integrated in single analyses to resolve multiple properties of the regulated proteome
- As well, co-regulation, rank of abundance, and protein 3D structure are poorly exploited aspects for data interpretation. We hope this works as a light refreshment prior to your evening fun $)$

MetaboLights \& Repository Level Workflows

Leveraging computational resource and new annotation logic to draw fresh insight

Callum Martin
 Software Developer

ebi.ac.uk/metabolights
EMBL-EBI

What is MetaboLights?

Open Source Study Repository \& Metabolite Knowledgebase
The database is cross-species, cross-technique and covers metabolite structures and their reference spectra as well as their biological roles, locations and concentrations, and experimental data from metabolic experiments

Submissions

Geographical distribution of submitted studies
(Top 10: China: 1490, USA: 509, UK: 450, Germany: 309, France: 124, Japan: 102, Spain: 87, Italy: 80, Australia: 71, India: 66)

MetaboLights study submission rates per year

What exactly does our data look like?

Broadly we have two categories of interest - metadata, the information that describes the experiment, and raw and derived data / files, the outputs from the experiment

MTBLS749: Alterations in the tyrosine and phenylalanine pathways revealed by biochemical profiling in cerebrospinal fluid of Huntington's disease subjects

Kim Kultima, Stephanie Herman

Huntington's disease (HD) is a severe neurological disease leading to psychiatric symptoms, motor impairment and cognitive decline. The disease is caused by a CAG expansion in the huntingtin (HTT) gene, but how this translates into the clinical phenotype of HD remains elusive. Using liquid chromatography mass spectrometry, we analyzed the metabolome of cerebrospinal fluid (CSF) from premanifest and manifest HD subjects as well as control subjects. Inter-group differences revealed that the tyrosine metabolism, including tyrosine, thyroxine, L-DOPA and dopamine, was significantly altered in manifest compared with premanifest HD. These metabolites demonstrated moderate to strong associations to measures of disease severity and symptoms. Thyroxine and dopamine also correlated with the five year risk of onset in premanifest HD subjects. The phenylalanine and the purine metabolisms were also significantly altered, but associated less to disease severity. Decreased levels of lumichrome were commonly found in mutated HTT carriers and the levels correlated with the five year risk of disease onset in premanifest carriers. These biochemical findings demonstrates that the CSF metabolome can be used to characterize molecular pathogenesis occurring in HD, which may be essential for future development of novel HD therapies.

PUBLICATIONS

Alterations in the tyrosine and phenylalanine pathways revealed by biochemical profiling
i...
\#: Herman Stephanie, Niemelä Valter, Emami Khoonsari Payam, Sun.

```
\leftrightarrow
```

Descriptors Protocols Samples Assays Metabolites Files Validations

Sample Information

Information pertaining to each individual sample processed in a study

Descriptors		Protocols	Samples	Assays	Metabolites	Files					
File: s_MTBLS749.txt							Items per page:	$494 \sim 1$	1-494 of 494 K	$<>$	>1
Filter											
		Hotocol REF	Sample Name			Organism	Organism part	Phenotype	Replicate	MS format	
	Sampl	collection	1_Rep1_NEG			Homo sapiens	cerebrospinal fluid	control	1	MS1 format	
	Sampl	collection	1_Rep1_POS			Homo sapiens	cerebrospinal fluid	control	1	MS1 format	
	Sampl	collection	1_Rep2_NEG			Homo sapiens	cerebrospinal fluid	control	2	MS1 format	
	Sampl	collection	1_Rep2_POS			Homo sapiens	cerebrospinal fluid	control	2	MS1 format	
	Sampl	collection	10_Rep1_NEG			Homo sapiens	cerebrospinal fluid	control	1	MS1 format	
	Sampl	collection	10_Rep1_POS			Homo sapiens	cerebrospinal fluid	control	1	MS1 format	
	Sampl	collection	10_Rep2_NEG			Homo sapiens	cerebrospinal fluid	control	2	MS1 format	
	Sampl	collection	10_Rep2_POS			Homo sapiens	cerebrospinal fluid	control	2	MS1 format	
	Sampl	collection	11_Rep1_NEG			Homo sapiens	cerebrospinal fluid	control	1	MS1 format	
	Sampl	collection	11_Rep1_POS			Homo sapiens	cerebrospinal fluid	control	1	MS1 format	
	Sampl	collection	11_Rep2_NEG			Homo sapiens	cerebrospinal fluid	control	2	MS1 format	
	Sampl	collection	11_Rep2_POS			Homo sapiens	cerebrospinal fluid	control	2	MS1 format	

Assay Information

Metabolite Annotation Information

Descriptors	Protocols	Samples	Assays	Metabolites	Files				
MAF Shee	1 MAF S	eet 2 M	MAF Sheet 3	MAF Sheet 4					
						Hems per page: 10 -	1-10 of 13 \|<	< >	>1
Filter									
Structure			Database identifier	Chemical formula	SMLEs	Inchl	Metaboliti identification	Mass to charge	$\mathrm{Fra}^{\text {a }}$
 CHEBI:26271 OC(=O)C1CCCN1 nels/C5H9NO2/c7-5(8)4-2-1-3-6-4/h4,6H,1- Proline 116.07029 $3 \mathrm{H} 2,(\mathrm{H}, 7,8)$									
			CHEB1:17750	$\mathrm{C}[\mathrm{N}+](\mathrm{C})(\mathrm{C}) \mathrm{CC}(10-\mathrm{l})=\mathrm{O}$		InChl=1S/C5H11NO2/c1$6(2,3) 4-5(7) 8 / h 4 \mathrm{H} 2,1-3 \mathrm{H} 3$	Betaine	118.08747	
			CHEBI:28300		$\mathrm{NC}(\operatorname{CCC}(\mathrm{N})=\mathrm{O}) \mathrm{C}(0)=0$	InChl=1S/C5H10N2O3/c6-3(5(9)10)1-2-4(7)8/h3H,1$2,6 \mathrm{H} 2,(\mathrm{H} 2,7,8)(\mathrm{H}, 9,10)$	Glutamine	147.07607	
		Cl	CHEBl:16811		$\operatorname{csccc}(\mathrm{N}) \mathrm{C}(\mathrm{O})=0$	InChl=1S/C5H11NO2S/c1-9- 3-2-4(6)5(7)8/h4H,2- $3,6 \mathrm{H} 2,1 \mathrm{H} 3,(\mathrm{H}, 7,8)$	Methionine	150.05818	

MetaboLights Data \& Galaxy Workflows

Galaxy is an open source web based computational platform that facilitates dataintensive biomedical research and analysis

- It provides a user-friendly interface for data-intensive biomedical research and analysis
- It supports reproducible research by capturing and recording the entire analysis process
- Galaxy integrates a comprehensive collection of bioinformatics and data analysis tools
- Researchers can create and execute complex computationa workflowcucino a vicual intarfaco
- We have our own instance at metabolights-labs.org
- (but you can deploy it anywhere including locally)

Welcome to the MetaboLights Labs Galaxy Instance!

Take an interactive tour: Galaxy UI History Scratchbook
MetaboLights Labs aims at building, testing and delivering cloud-based Galaxy workfl
datasets with 1000's of samples and simultaneously capture all metadata associated datasets with 1000 's of samples and simultaneously capture all metadata associated t
Metabolights Labs infrastructure is formulated based on several comunity
 Metabolights.

MetaboLights Workflows

"Standardised metabolite annotation workflows for enhancing biological interpretation in metabolomic data repositories"

$\leftarrow \rightarrow \mathrm{c}$ \& metabolights-labs.org

Tools
search tools
\pm Upload Data

MetaboLights

Welcome to the MetaboLights Labs Galaxy Instance!

```
Take an interactive tour: Galaxy UI History Scratchbook
```

MetaboLights Labs aims at building, testing and delivering cloud-based Galaxy workflow(s), with the computational capacity to process datasets with 1000 's of samples and simultaneously capture all metadata associated to allow rigorous reproducibility and reporting.
MetaboLights Labs infrastructure is formulated based on several community agreed processing, feature extraction and compound identification tools. The necesssary functionality is incorporated so that it can be readily used in conjunction with popular online metabolomics databases such as MetaboLights.
isaAPI

MetaboLights Labs - Workflows - MDP + XCMS + BEAMSpy

Rick Dunn (PI), Tim Ebbels (PI),

MetaboLights Data Provider (MDP) Tool

- Researchers can select files from MetaboLights and apply custom msConvert filters
- Studies: 596, Assays: 1271, Assay Files: 174565
- Creates an open-source MS standard / file for preprocessing

```
* MS Data Provider from MetaboLights Database Metabolights Data Provider (Galaxy Version 0.1+galaxy0)
```

Metabolights Studies and Assays
MS Conversion Configuration and Filters
[© ㄴ 356: mzml_conversion_config_01.txt

Select reference study

MTBLS1066: Untargeted Metabolomics Reveals Molecular Effects of Ketogenic Diet on Healthy and Tumor Xenograft Mouse Models.
If your study of interest is not listed, contact the Metabolights team
Assays

a_mtbls1066_NEG_HILIC_LCMS.txt
Assay Description [Polarity | Column Type | Organism:Organism part]
NEGATIVE | NUCLEODUR HILIC ($1.8 \mu \mathrm{~m}, 2 \mathrm{~mm} \times 150 \mathrm{~mm}$; Macherey-Nagel) | Mus musculus:blood plasma,Mus Musculus:blood plasma,blank:solvent
File Format
.mzML
Select assay file(s)
\square Select/Unselect all

- 000_DaLi_H9M9_Blank_01_neg_06_HILIC.mzML
- 003_DaLi_H9M9_Pool_01_neg_09_HILIC.mzML

014_DaLi_H9M9_H_C_R1_neg_20_HILIC.mzML
\square 017_DaLi_H9M9_BC_MCT_R1_neg_23_HILIC.mzML

- 019_DaLi_H9M9_H_LCT_R1_neg_25_HILIC.mzML

032_DaLi_H9M9_BC_C_R1_neg_38_HILIC.mzML
-033_DaLi_H9M9_H_MCT_R1_neg_39_HILIC.mzML

MetaboLights Data Provider (MDP) Tool

Organism \& Organism Parts \& File Formats

Organisms	Count of files
Homo sapiens	57987
Lolium perenne	23914
Mus musculus	7355
Saccharomyces cerevisiae	5984
reference compound	4623
blank	2717
sea water	2654
Vitis vinifera	2193
Ovis aries	1948
Rattus norvegicus	1943
groundwater	1859
Camellia sinensis	1788
Solanum lycopersicum \times Solanum pennellii	1694
Gallus gallus	1562
Arabidopsis thaliana	1465
Bos taurus	1427
Chenopodium quinoa	1407
Escherichia coli	1326
Drosophila melanogaster	1047
..	

Organism Parts	Count of files
leaf	28844
blood serum	16528
blood plasma	15909
whole organism	10813
urine	6445
feces	3754
exometabolome	3471
endometabolome	2898
pure substance	2443
Colon	2361
mixture	2293
cervical mucus	2164
blank	2088
Plasma	1992
Serum	1950
liver	1941
fruit	1896
Sweat	1774
Seed	1727
rosette leaf	1197
supragingival dental plaque	1156
Wine	1087
\ldots	

File Format	Count of files
.raw	72826
. mzML	52556
. mzXML	10590
.d	3907
raw.zip	1262

Galaxy Workflow: XCMS (\& MSnbase)

- Individual XCMS steps are structured into a workflow to extract and match peaks across files and generate data matrix (m / z vs RT vs intensity)
- 4 parameter sets based on 'assay type' \& 'column model'
- 50 cm length, UPLC
- 100 cm length, UPLC
- 150 cm length, UHPLC
- 150 cm length, HPLC
- Optimisation in collaboration with Rick Dunn (UoL)

Galaxy Workflow: XCMS (\& MSnbase)

XCMS Workflow for mzML Dataset Collection - Default

BEAMSpy

BEAMSpy is a Python package that includes several automated and seamless computational modules that are applied to putatively annotate metabolites detected in untargeted ultra (high) performance liquid chromatography-mass spectrometry or untargeted direct infusion mass spectrometry metabolomic assays.
8: BEAMSpy
Peaklist
Intensity matrix
Lon mode
Library adducts
Library Neutral Losses isotopes
BEAMSpy on input
network (Graph Modelling
Language) (txt)
BEAMSpy on input
dataset(s): SQLite
database (sqlite)
BEAMSpy on input
dataset(s): Summary table
(Multiple rows and
separate columns) (tsv)
BEAMSpy on input
dataset(s): Summary
charts (pdf)

MTBLS749: Alterations in the tyrosine and phenylalanine pathways revealed by biochemical profiling in cerebrospinal fluid of Huntington's disease subjects

Kim Kultima, Stephanie Herman

Huntington's disease (HD) is a severe neurological disease leading to psychiatric symptoms, motor impairment and cognitive decline. The disease is caused by a CAG expansion in the huntingtin (HTT) gene, but how this translates into the clinical phenotype of HD remains elusive. Using liquid chromatography mass spectrometry, we analyzed the metabolome of cerebrospinal fluid (CSF) from premanifest and manifest HD subjects as well as control subjects. Inter-group differences revealed that the tyrosine metabolism, including tyrosine, thyroxine, L-DOPA and dopamine, was significantly altered in manifest compared with premanifest HD. These metabolites demonstrated moderate to strong associations to measures of disease severity and symptoms. Thyroxine and dopamine also correlated with the five year risk of onset in premanifest HD subjects. The phenylalanine and the purine metabolisms were also significantly altered, but associated less to disease severity. Decreased levels of lumichrome were commonly found in mutated HTT carriers and the levels correlated with the five year risk of disease onset in premanifest carriers. These biochemical findings demonstrates that the CSF metabolome can be used to characterize molecular pathogenesis occurring in HD, which may be essential for future development of novel HD therapies.

PUBLICATIONS

Alterations in the tyrosine and phenylalanine pathways revealed by biochemical profiling
i...
\#: Herman Stephanie, Niemelä Valter, Emami Khoonsari Payam, Sun.

```
\leftrightarrow
```

Descriptors Protocols Samples Assays Metabolites Files Validations

MetaboLights Labs - Workflows - MDP + XCMS + BEAMSpy

Rick Dunn (PI), Tim Ebbels (PI),

In the Future

In the future we plan to:

- Integrate our workflows directly and seamlessly into submission process
- Develop workflows for the processing and annotation of MS/MS data, and facilitate additional analyses such as molecular networking
- Integrate MetaboLights and GNPS (as well as other repositories such as Metabolomics Workbench) to enable cross repository analysis
- Work with other communities to map standards (data and metadata) for example proteomics and SDRF (PRIDE)

PRIDE

Acknowledgements

EMBL-EBI Metabolomics team

- Claire O'Donovan (PI)
- Mark Williams
- Thomas Payne
- Noemi Tejera Hernandez
- Felix Amaladoss
- Callum Martin
- Ozgur Yurekten

UK Research and Innovation

NIH

EMBL

w

Funded by the European Union

The Metabolomics team's activities were supported in the past year by the above funding bodies

[^0]: "-" biotin; "+" biotin

