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What is a learning behaviour?

Given a task T, a performance criterion C, and experience E, a system learns from E if it
becomes better at solving task 7, as measured by criterion C, by exploiting the
information in E. *

We need to know:

> which task is going to be performed
> how the performance on the task is measured
> what kind of information is used by the system

T. Mitchell. Machine Learning. McGraw-Hill 1996

Machine Learning in Mass Spectrometry Analysis

Data is complex, noisy, non-trivial

Agenda

< Overview of machine learning techniques in mass spectrometry data analysis
< Panel:

Machine-learning for the proteomic masses: learning peptide properties and clustering spectra, Lukas
Kall, Science for Life Laboratory, Stockholm

MS-based pr ics using machine learning techniques: fragmentation prediction,
relative peptide intensity prediction, missing value imputation. Lars Jensen, University of Copenhagen
Bayesian learning and MS big data, Sam Payne, Brigham Young University, Salt Lake City
Machine learning applications for real-time analysis, Devin Schweppe, Harvard University

< Discussion

Number of Submitted datasets per Month (PRIDE Archive)
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Species identification

Input: MS1 or MS2 data from a given
sample

Output: (list of) detected species

Utility:

Shute et al. Microbiology 1984
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Canonical variates analysis
Stepwise discriminant analysis

Phenotype / disease classification

Input: MS1 or MS2 data from an
individual

Output: predicted phenotype

Utility: early diagnosis or disease
prognosis

Adam et al. Cancer Research 2002

[ SELDI PEAK DETECTION

2-40KDa range
63,157 Peaks

PEAK ALIGNMENT (CLUSTERING)
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DETERMINE DISCRIMITORY POWER OF EACH PEAK|
Nvs. PCA; Nvs. BPH; BPH vs. PCA
Area under ROC Curve (AUC)
I 124 Peals (AUC>0.62)

9 Peaks

Classifying peptide-spectrum matches

Input: a vector of features associated
with a peptide-spectrum match

Output: Is this peptide responsible for
generating this spectrum?

Utility: boost statistical power to detect
peptides / proteins

Keller et al. Analytical Chemistry 2002

Clustering of mass spectra

Input: large collection of mass spectra
Output: cluster assignments
Utility:

e boost statistical power to detect
peptides

e speed up database search ool

Tabb et al. Analytical Chemistry
2002

Guthals et al. Molecular BioSystems 2012



SCiLiﬁLab
MS and ML
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Identification by comparing observations to predictions
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« Clustering offers a nice way to condense information from prior
experiments
Frank et al 2008;Griss et al
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Background on machine
learning for MS-based
proteomics

MS-related separation techniques and their predictors
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MS1 features can often be retrieved across samples...
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Dramatic increase in number of differentially quantified

Quantified Proteins
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1300

650

proteins at 5% FDR

UPS-Yeast Bladder Cancer Liver Fibrosis

B Quandenser I MaxQuant/Perseus



Three problems to tackle
with machine learning
network biology

Lars Juhl Jensen
jensenlab.org ST O,

Search Download Help My Data

& STRING

data visualization

string-db.org Szklarczyk et al., Nucleic Acids Research, 2019
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fragment ion spectrum theoretical spectra

count matches assume all are equal

fragmentation is predictable o
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Kirik, Refsgaard & Jensen, Journal of Proteome Research, 2019



Without ML With ML
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better PTM localization peptide abundance

one protein multiple unique peptides



equal abundance different intensities

plenty of training data peptides + MS parameters

relative intensities better protein quantification



cross-sample comparison confounding, effects

phosphoproteomics kinase motif analysis

regulation of CDK activity different growth rates
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‘ a few common effects
affect numerous peptides IN a consistent manner

many unrelated experiments dimensionality reduction



auto encoder learn effect signatures

quantify their impact residual signals




Data, Data Everywhere. Are we learning?

Bayes i a n Lea rn i n g Homzcan we learn from public mass spectrometry data?
and MS Big Data lot of times. Why do we always

pretend to not know anything
Samuel Payne about it?”
Brigham Young University e mIHHH‘ ‘ et
ASMS 2020 - Bioinformatics Interest Group

“We have seen this spectrum a

Number of submitted datasets

Month

Learning from our data B ion B-PO, ion Building your Bayes Net
strong strong 22.5%
What can we learn about expected strong medium 20.4% Identify mutual information
. . L strong weak 3.8%
intensity from data mining? strong absent 53.3% .
medinin strong 8.1% More nodes is not always better
medium medium 25.1%
medium weak 10.8% l Flankbl I Sector I Flanky]
b7 medium absent 55.9%
weak strong 3.1%
b7 - phos weak medium 12.9%
weak weak 14.5%
weak absent 69.5%
absent strong 5.4%
L absent medium 15.9%
absent weak 9.3%
absent absent 69.4%

Payne et al. 2008
https://doi.org/10.1021/pr800129m

Training New Areas for Bayesian Scoring in MS id
Inspect (deprecated) trained on 170,000 phospho-peptide spectra (2008) to learn “We have seen this spectrum a lot of times. Why do we
the probabilities (and joint probabilities) of fragment ion intensity always pretend to not know anything about it?”

--- Mike MacCoss
MSGF+ trained on 2.8 million spectra (2014) to learn the probabilities of fragment \J
ion intensities Spectral Library Matching (DIA or metabolomics)

- are my peak relative intensities as expected?
- how often does this peak have interference?



Lipids and Bayes Learning New Areas for Bayesian Scoring
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Machine Learning Applications

Live Learning
ML applications for real-time analysis

Millisecond Informatics Massive Scale Data Analysis

Commercial Integration Super Massive Data Integration

Devin K Schweppe, PhD

ML Analysis of MS Data in the Life Sciences Workshop
ASMS 2020 Reboot

Thurs, June 4th

Basis: Multiplexed proteomics Slowed down by SPS-MS3
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Millisecond Informatics: Orbiter iAPI: Cycling through Real-time data

Offline Morkflow RTS
Raw Data Instrument
Conversion 0 API
Monoisotopic peak Monoisotopic peak
correction correction
Peptide Spectral Peptide Spectral
Matching: Comet Matching: Comet
Peptide False Discovery Peptide False Discovery
Rate Estimation Rate Estimation
Quant. PSM Filters lon Selection for
(Iso. spec., Summed S/N) Quantitation
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Linear Discriminant Analysis (LDA)

Jimmy Eng

Schweppe et al JPR2020

consistent XCorr results compared to offline search.

Towards real-time FDR filtering

frraal]

Combining peptide spectral match scores (e.g. XCorr and deltaCorr) aids
separation of target and decoy populations.

Accumulate Training Data
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LDA enables fast target-decoy classification and FDR

estimation

Schweppe et al PR2020 i

1000-2000 total PSMs collected
Atleast 10 decoy PSMs*

“Huttlin etal 2007



Improved sensitivity & quantitative accuracy
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Real-time FDR filtering increases the number of quantified peptides and
eliminated isobaric tag interference.
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As sample size grows...

# of samples
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Massive Scale Data Analysis
375 Super Massive Data Integration
2000
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Manifold embedding of cellular fitness profiles

Dependency Map Project
(Cellular Fitness)

Related genes co-vary in their dependency

1. Data preparation
3,600 genes

678 screens

5. Map of gene-gene correlations ~

2. Batch correction
3,600 genes

Combined

994 screens —» 3. Paarson correlation —» 4. Manifold embedding (UMAP)

3,600 genes 2 dim andy)

3,600 genes 3,600 genes

Josh Pan
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Moving Forward with ML

Millisecond Informatics

Massive Scale Data Analysis

Commercial Integration Super Massive Data Integration

*Thermo - MP112

Latent representations of graphs with DeepWalk

Communities within the BioPlex network

2

BioPlex network

DeopWak: Online Loaring of Socil Representtions

What is the interplay of protein communities within the

Josh Pan BioPlex network?
Ed Huttin

Manifold Embedding to determine latent cell states

Dependency Map

Other datasets:
CCLE Proteome (usinowetal cei2020)
Cell perturbation
OxiMouse (xiaoetal ceir2020)

Incorporating multiple large-scale analyses to identify
novel complex members, pathways or allied proteins,
particularly for uncharacterized proteins.
JoshPan
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