MS-based Interactomics: Computational resources and tools for studying the physical interactome

ASMS Bioinformatics MS Interest Group

Wednesday Evening Workshop

Isabell Bludau & Bill Noble

What is 'interactomics' and why do we discuss it?

- Many MS-omics studies focus on **cataloging and quantifying individual molecules** of a particular type
 - e.g. quantitative protein or metabolite matrix
- Most biological molecules don't operate in isolation but they interact with each other
 - protein complexes
 - activity regulation via metabolite/drug binding
- **'Interactome'** = **comprehensive** set of **molecular interactions** in biological system
 - here we focus only on **physical** (not functional) interactions

Current MS-based techniques for large-scale interactomics

Protein-protein interaction (PPI) networks:

- Affinity-purification MS (AP-MS)
- Proximity-dependent labeling: APEX, BioID

Protein-protein complexes:

• Protein co-fractionation MS (CoFrac-MS)

Structural information on PPIs:

• Cross-linking MS

> Interaction network

Protein complexes

Structure: interacting protein residues

Current MS-based techniques for large-scale interactomics

Protein-metabolite/drug interactions:

- Thermal proteome profiling (TPP) / Cellular Thermal Shift Assay (CETSA)
- Limited proteolysis-coupled MS (LipMS)

Protein-ligand interactions

Protein-RNA interactions:

• Protein-RNA crosslinking

Protein-RNA interactions at residue resolution

Available resources and databases

Databases based on:

- High-throughput methods
- Low-throughput assays
- Computational predictions

Goals:

- Expand current knowledge
- Use knowledge from existing databases
- Look at interactome changes and dynamics

Databases:

Protein-protein interactions (PPIs)

- STRING (<u>https://string-db.org/</u>)
- BioPlex (<u>http://bioplex.hms.harvard.edu/</u>)
- PrePPI (<u>https://honiglab.c2b2.columbia.edu/PrePPI/</u>)

Protein complexes

- CORUM (<u>https://mips.helmholtz-muenchen.de/corum/</u>)
- Complex Portal (<u>https://www.ebi.ac.uk/complexportal/home</u>)

Protein-metabolite/drug interactions

• STITCH (http://stitch.embl.de/)

General interactions:

IntAct (<u>https://www.ebi.ac.uk/intact/</u>)

Computational challenges and what we would like to discuss today

- Protein-protein interaction networks: affinity-purification MS (AP-MS)
 - Many reciprocal pull-downs to map the full PPI network of a cell
 - 100s 1000s of MS measurements > prevent error accumulation
 - Confidently distinguish true from false interactions
- Protein-protein complexes: Co-fractionation MS (CoFrac-MS)
 - Comprehensive interactome map from a single experiment (< 100 MS measurements)
 - Distinguish true interactions from random co-elutions
- Protein-drug interactions: thermal proteome profiling (TTP)
 - Many metabolites are tested against thousands of proteins
 - How to estimate significance?

Eduard Huttlin

Isabell Bludau

Dominic Helm

Edward Huttlin Harvard Medical School

From IP's to Interactomes: Computational Analysis of Large-scale AP-MS Data

Ed Huttlin

Harvard Medical School

Department of Cell Biology Boston, Massachusetts

The Achilles Heel of AP-MS: Which Interactions are Real?

$\stackrel{\text{Affinity-Purification MS}}{\longrightarrow} \longrightarrow \stackrel{\stackrel{\stackrel{\stackrel{\stackrel{}}{\longrightarrow}}}{\longrightarrow}}{\longrightarrow} \stackrel{\stackrel{\stackrel{\stackrel{}}{\longrightarrow}}{\longrightarrow}}{\longrightarrow} \stackrel{\stackrel{\stackrel{\stackrel{}}{\longrightarrow}}{\longrightarrow}}{\longrightarrow} \stackrel{\stackrel{\stackrel{}}{\longrightarrow}}{\longrightarrow} \stackrel{\stackrel{\stackrel{}}{\longrightarrow}}{\longrightarrow} \stackrel{\stackrel{\stackrel{}}{\longrightarrow}}{\longrightarrow} \stackrel{\stackrel{\stackrel{}}{\longrightarrow}}{\longrightarrow} \stackrel{\stackrel{\stackrel{}}{\longrightarrow}}{\longrightarrow} \stackrel{\stackrel{\stackrel{}}{\longrightarrow}}{\longrightarrow} \stackrel{\stackrel{\stackrel{}}{\longrightarrow}}{\longrightarrow} \stackrel{\stackrel{\stackrel{}}{\longrightarrow}}{\longrightarrow} \stackrel{\stackrel{\stackrel{}}{\longrightarrow}}{\longrightarrow} \stackrel{\stackrel{\stackrel}{\longrightarrow}}{\longrightarrow} \stackrel{\stackrel{}}{\longrightarrow} \stackrel{}}{\longrightarrow} \stackrel{\stackrel{}}{\longrightarrow} \stackrel{}}{\longrightarrow} \stackrel{}}{\rightarrow}$

COMPARISON WITH NEGATIVE CONTROLS

Negative control IP's are used to Define background. Proteins present At higher abundance than background Are assumed to be interactors.

Examples: QUBIC, SAINT, many others

COMPARISON ACROSS UNRELATED IP's

Background is assumed to be constant across IP's. Interacting proteins are found by seeking proteins Whose abundance is increased above their Average across many IP's of unrelated baits.

Examples: CompPASS, SAINT, MiST, HGScore, Socio-affinity Index

CompPASS Scoring Algorithm

	Bait 1	Bait 2	Bait 3	Bait 4	Bait <i>k</i>
Interactor 1	X _{1,1}	X _{2,1}	X _{3,1}	X _{4,1}	X _{k,1}
Interactor 2	X _{1,2}	X _{2,2}	X _{3,2}	X _{4,2}	X _{k,2}
Interactor 3	X _{1,3}	X _{2,3}	X _{3,3}	X _{4,3}	Х _{к,3}
Interactor 4	X _{1,4}	X _{2,4}	X _{3,4}	X _{4,4}	X _{k,4}
Interactor <i>m</i>	X _{1,m}	X _{2,m}	Х _{3,т}	Х _{4,т}	X _{k,m}

Stats Table

X_{i,i} = Spectral counts for interactor *j* with bait *i*

Is the protein more abundant than usual in this IP?

X = Average spectral counts for protein across baits
 X_{i,j} = Spectral counts for interactor j with bait i
 S = Standard Deviation spectral counts across baits

 $\frac{WD^{N}-Score}{WD^{N}} = \sqrt{\left(\frac{N}{n} \frac{S}{\bar{X}}\right)^{p} X_{i,j}}$

N = Number of runs

- n = Number of runs in which the protein is found
- p = Number of replicates observed (1 or 2)

How frequently is this protein detected? Is It detected reproducibly?

Mat Sowa

CompPASS: Sowa et al. (2009) Cell, 138:389-403.

Wade Harper

An R Implementation of CompPASS

0	CompPASS Comparative Proteomic Analysis Software Suite
Experiments	5
Browse	SampleData_Set1.tsv
	Upload complete
External Sta	ts
Browse	No file selected
Normalizatio	n Factor
Input Ins	structions
La Downloa	d Sample Input
The input file the following f	must be a tab-delimited text file no larger than 5Mb with five columns:
1. Experin 2. Replica 3. Bait 4. Prey 5. Spectra	nent ID ate al Count

📥 Download						
Show 25 v entries					Search:	EIF4E
Experiment.ID	Bait 🗍	Prey 🔶	AvePSM	Z ∳	WD 🔻	Entropy 🔶
14613	EIF4E	EIF4G3	95.0	6.92955050	7.83625947	0.9992880
14613	EIF4E	ANGEL1	10.5	6.92964646	5.23832034	0.8756634
14613	EIF4E	EIF4ENIF1	30.0	6.92579623	4.28384182	0.9805264
14613	EIF4E	EIF4EBP2	21.0	6.89832377	3.39071344	0.9859094
14613	EIF4E	EIF4G1	134.0	6.92246807	2.18340357	0.9910094
14613	EIF4E	CBR3	1.0	6.92964646	1.61658075	1.0000000
14613	EIF4E	MAPRE3	1.0	6.92964646	1.61658075	1.0000000
14613	EIF4E	EIF4E	56.0	151.52528743	1.57844143	0.9888990
14613	EIF4E	PABPC4	3.5	0.69158986	1.35581151	0.9886994
14613	EIF4E	EIF4EBP1	30.5	6.92011991	1.33350970	0.9450667
14613	EIF4E	EIF3A	3.5	5.61111102	1.07350240	0.8960382
14613	EIF4E	EIF3F	1.5	6.26471601	0.43204938	0.9544340
14613	EIF4E	EIF3B	5.0	6.13449264	0.4000000	1.0000000
14612	SFN	EIF4EBP1	1.0	0.07426017	0.24146059	1.0000000

David Nusinow

https://github.com/dnusinow/cRomppass http://bioplex.hms.harvard.edu/comppass/

From IP's to Interactomes: Meeting the Challenges of Scale

PioPlay 10 PioPlay 20			DioDlay 2.0		— 100	
	1000 A	Rep. 2				
Parameter:	AP-MS Baits	LC-MS Runs	MS ² Spectra	Peptide-Spectral Matches	Protein Identifications	
Median Statistics Per Run:	1	2	14,090	3,923	805	
293T:	10,128	20,256	285,407,040	79,464,288	16,306,080	
HCT116:	5,522	11,044	155,609,960	43,325,612	8,890,420	
Total:	15,650	31,300	441,017,000	122,789,900	25,196,500	

Data processing overview

Automated and Adaptive Run QC

Automatic Notification of Problematic Runs

SewerRat@harpert Mon 6/3/2019 1:44 Al Huttlin, Edward Leo; I	aulo, Joao A; joe_cannon@hms.harvard.edu +2 others ⊗	
Problems with se	arch 71455: qb01088_HCT-REPEAT03_A03_A_00671_053119.	
Parameter	Value	
tpMax	553	
totalPSMs	553	
totalProteins	100	
ratioUPepsToTPe	os 0.47377852842942	
sensitivity	0.99999819168501	59.68 NL: 517.23.4.39E8
msmsSpectra	14565	Base Po
successRate	0.037967730861655	FIMS
aveXcorr	2.5170851717902365	[300.00 1500.00
MCRate	0.094032379688283	b5768
search_name	qb01088_HCT-REPEAT03_A03_A_00671_053119	
score	22.6033451322409	49.20 724.39
manualTraining	no	44.91
	bad	385.15
class		

Distinguishing Interactors from Background and False Positives

Both *bona fide* interactors and false positives appear in AP-MS experiments as "rare" events that score as likely interactions. Unless precautions are taken, enrichment of these false positives can cause surprisingly high false discovery rates among AP-MS datasets.

Distinguishing Interactors from Background and False Positives

- A key challenge of AP-MS is distinguishing the few **true interacting proteins** (~1-2%) from a much larger number of **background proteins** (~98%), **false positives** (~1%), and other **experimental artifacts**.
- While existing algorithms for AP-MS distinguish enriched interacting proteins from nonspecific background, CompPASS-Plus uniquely accounts for false positive ID's.

CompPASS-Plus for Interactor Identification

- CompPASS-Plus is a Naive Bayes classifier that extends CompPASS for improved Identification of interacting proteins.
- Features include standard CompPASS scores as well as customized scores.
- Training data is obtained from STRING/GeneMania and from Target/Decoy methods
- Leave-one-out cross-validation is incorporated at the 96-well-plate level for classification.

CORUM Validation

BioPlex Associates New Proteins with Known Complexes

Summary

- Separating true interacting protein partners from background is a serious challenge for AP-MS
- A variety of algorithms have been developed to address this that accommodate a variety of experimental designs
- Performing AP-MS at truly large scale leads to additional challenges that must be addressed.
- Our CompPASS-Plus algorithm has enabled us to efficiently identify interacting proteins and produce reliable maps of the human interactome in multiple cell types.

Isabell Bludau ETH Zurich

Underlying technology for data acquisition: Protein co-fractionation mass spectrometry

Underlying technology for data acquisition: Protein co-fractionation mass spectrometry

Established data analysis strategy: Protein correlation profiling

Targeted analysis strategy:

Complex-centric proteome profiling

Targeted anaysis strategy:

Complex-centric proteome profiling

- ✓ Automated software for targeted complex-centric analysis
- ✓ Parallel and sensitive protein complex detection
- ✓ Complex-level FDR estimation

Complex-centric proteome profiling: Decoy based FDR estimation

Targets

a) Defined hypotheses (e.g. CORUM)

ء 🎝 🍕 🌜

b) Interaction network

(e.g. AP-MS, BioPlex, StringDB) Select 1st degree neighbors of each protein as one target hypothesis

Decoys

• Generate matching decoy for each target (same complex size distribution)

R CCprofiler

https://github.com/CCprofiler/

 Require minimum network distance between decoy proteins to avoid overlap with targets

Complex-centric proteome profiling: Benchmark

Complex-centric proteome profiling: Benchmark

Targeted anaysis strategy:

Complex-centric proteome profiling

- ✓ Automated software for targeted complex-centric analysis
- ✓ Parallel and sensitive protein complex detection
- ✓ Complex-level FDR estimation

Targeted anaysis strategy:

Complex-centric proteome profiling

- ✓ Automated software for targeted complex-centric analysis
- ✓ Parallel and sensitive protein complex detection
- ✓ Complex-level FDR estimation

 Detect and quantify hundreds of protein complexes

HEK293 soluble proteome

- SEC fractionation: 1 mg, Yarra-SEC-4000, 81 fractions
- SWATH-MS: Triple-TOF 5600, 64 vw, 120 min gradient
- Consistent quantification of 4916 proteins

Detection of 572 out of 1753 CORUM complexes (5% FDR)

- Detect and quantify hundreds of protein complexes
- ✓ Investigate sub-complexes and assembly intermediates

HEK293 soluble proteome

Proteasome assembly

 Detect and quantify hundreds of protein complexes

HEK293 soluble proteome

Proteasome assembly

- Detect and quantify hundreds of protein complexes
- Investigate sub-complexes and assembly intermediates
- ✓ Evaluate global proteome assembly characteristics

The majority of the proteins appear in at least one assembled state

Current developments:

Quantitative comparison of protein complexes across conditions

Current developments:

Quantitative comparison of protein complexes across conditions

Splicing efficient and PRPF8 depleted human cells

- > 110 out of 553 complexes are differentially abundant (FDR < 0.05)
- Spliceosome biogenesis is down-regulated

Current developments:

Data-driven detection of assembly specific proteoforms

'Proteoforms' = protein variants that originate from the same gene, but that have a unique amino acid sequence and post-translational modifications

- Make use of peptide-level information available in SEC-SWATH-MS
- Distinguish assembly specific
 proteoforms based on unique peptides
- ✓ Parallel detection of 1,378 assembly specific proteoforms

Current developments: Network-centric analysis

SEC analysis toolkit (SECAT)

Determine perturbed nodes in the PPI interaction network

Rosenberger et al. (in preparation)

Take home message:

Complex-centric analysis of CoFrac-MS data

- Consistent detection and quantification of 100s protein complexes on a proteome-wide scale
- ✓ Controlled complex-level FDR
- ✓ Sub-complex resolution

Requirements:

- Quantitative peptide or protein matrix (DIA or DDA)
- Annotation table that matches MS runs to the sampled fractions
- Prior protein connectivity information (e.g. CORUM, BioPlex, StringDB)
- Coming next: quantitative complex comparison, proteoform detection, network-centric analysis

Thank you for your attention!

Aebersold lab

- Ruedi Aebersold
- Ben Collins
- Moritz Heusel
- Max Frank
- George Rosenberger
- Claudia Martinelli
- Peng Xue
- Robin Hafen
- Amir Banaei-Esfahani
- Audrey van Drogen
- Yansheng Liu
- Matthias Gstaiger

External collaborators

- Hannes Röst
- Yuija Cai
- Vihandha Wickramasinghe
- Ashok Venkitaraman

Dominic Helm EMBL Heidelberg

Thermal proteome profiling for interactomics

ASMS 2019 – MS-Based interactomics dominic helm

Acknowledgement

Martin Beck

Peer Bork Nassos Typas Wolfgang Huber Eileen Furlong Christoph Mueller Natalie Romanov

Malte Paulsen

Marcus Bantscheff

Sindhuja Sridharan, Nils Kurzawa, Isabelle Becher, Frank Stein, Dominic Helm, Tomi Määttä, Andre Mateus, Per Haberkant, Mandy Rettel, Jianguo Zhu, Henrik Hammaren, Clement Potel, Malay Sha, Vallo Varik, Kerri Malone, Cecilia Perez-Borrajero, Matteo Perino

Former members: Johannes Hevler, Maike Schramm EMBL

Proteomics Core Facility Flow Cytometry Core Facility Advanced Light Microscopy Core Facility Mechanical Workshops

Holger Franken

Celia Berkers (Utrecht University)

Prelude: Isobarquant

Savitski MM et al Science 2014

Protein-Drug interaction: Staurosporine targets

Melting curve fits

- Fit parametric sigmoidal curves for each condition
- Estimate melting points
- Compare melting points between the treatment conditions using a z-Test

Problems with the melting point (Tm) comparison

Several reasons can lead to Tm shift being insufficient to detect ligand effect:

- Small but reproducible shifts (BTK)
- Shifts in non-centered curve areas (PRKCB)
- Melting points outside the temperature range (NQO2)

Our solution: Functional melting curve analysis

Fit two competing models per protein Compute F-statistic:

$$F = \frac{\text{RSS0} - \text{RSS1}}{\text{RSS1}}$$

RSS: residual sum of squares

Karsten Bach Dorothee Childs Holger Franken

Childs*, Bach*, Franken* et al. (2018) bioRxiv

Functional melting curve analysis

New method captures old targets

+ cases with more subtle effects

Childs*, Bach*, Franken* et al. (2018) bioRxiv

More sensitive experimental design: 2D-TPP

Compound concentration-dependent profiling over a range of temperatures

Instead of statistics: More experiments – more data – more targets

Protein-Metabolite interaction: Adenosine triphosphate (ATP)

Sridharan S[#], Kurzawa N[#], Werner T, Guenthner I, Helm D, Huber W, Bantscheff M^{*}, Savitski MM^{*} Nature Communications 2019

Functional 2D-TPP data analysis using sliding temperature windows

- Fit models to adjacent temperatures
- H0 Model: intercept model (blue)
- **H1 Model**: dose-response curve (orange)
- Compare goodness of fit
- Summarize per protein score F^{comb}
- Estimate the FDR for given scores by repeating the procedure with permuted data and ranking results jointly

RSS: residual sum of squares

Validation of the approach on drug datasets with known targets

12

9

YHJX

MURA

NHAB

- Ampicillin treated *E. coli* lysate
- beta-lactam antibotic, inhibting bacterial cellwall synthesis
- Known targets: MrcA, FtsI, DacB & PbpG
- Other binders: AmpC

André Mateus

DACB

Mateus et al. Mol. Sys Biol. 2018

Thermal proteome profiling

- Unbiased
- Proteome wide
- Versatile

Thank you for your attention!

