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What	is	‘interactomics’	and	why	do	we	discuss	it?	
		
•  Many	MS-omics	studies	focus	on	cataloging	and	quantifying	individual	molecules	of	a	

particular	type	
•  e.g.	quantitative	protein	or	metabolite	matrix	

•  Most	biological	molecules	don’t	operate	in	isolation	but	they	interact	with	each	other		
•  protein	complexes	
•  activity	regulation	via	metabolite/drug	binding	

•  ‘Interactome’	=	comprehensive	set	of	molecular	interactions	in	biological	system	
•  here	we	focus	only	on	physical	(not	functional)	interactions		

	



Current	MS-based	techniques	for	large-scale	interactomics	
		
Protein-protein	interaction	(PPI)	networks:		
•  Affinity-purification	MS	(AP-MS)	
•  Proximity-dependent	labeling:	APEX,	BioID	

	
Protein-protein	complexes:		

•  Protein	co-fractionation	MS	(CoFrac-MS)	
	
	

Structural	information	on	PPIs:	
•  Cross-linking	MS	
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➭  Interaction	network	

➭  Protein	complexes		

➭  Structure:	interacting	
protein	residues	



Current	MS-based	techniques	for	large-scale	interactomics	
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Protein-metabolite/drug	interactions:	
•  Thermal	proteome	profiling	(TPP)	/	
Cellular	Thermal	Shift	Assay	(CETSA)	

•  Limited	proteolysis-coupled	MS	(LipMS)	

Protein-RNA	interactions:	
•  Protein-RNA	crosslinking	
	

➭  Protein-ligand	
interactions	

➭  Protein-RNA	
interactions	at	residue	
resolution		



Available	resources	and	databases	
		

Databases:	
Protein-protein	interactions	(PPIs)	
•  STRING	(https://string-db.org/)	
•  BioPlex	(http://bioplex.hms.harvard.edu/)	
•  PrePPI	(https://honiglab.c2b2.columbia.edu/PrePPI/)	

Protein	complexes	
•  CORUM	(https://mips.helmholtz-muenchen.de/corum/)	
•  Complex	Portal	(https://www.ebi.ac.uk/complexportal/home)	

Protein-metabolite/drug	interactions	
•  STITCH	(http://stitch.embl.de/)	

General	interactions:	
•  IntAct	(https://www.ebi.ac.uk/intact/)	

Databases	based	on:	
•  High-throughput	methods	
•  Low-throughput	assays	
•  Computational	predictions	
	

Goals:	
•  Expand	current	knowledge	
•  Use	knowledge	from	existing	databases	
•  Look	at	interactome	changes	and	dynamics	



Computational	challenges	and	what	we	would	like	to	discuss	today	
		
•  Protein-protein	interaction	networks:	affinity-purification	MS	(AP-MS)	

•  Many	reciprocal	pull-downs	to	map	the	full	PPI	network	of	a	cell		
•  100s	-	1000s	of	MS	measurements	>	prevent	error	accumulation	
•  Confidently	distinguish	true	from	false	interactions	

•  Protein-protein	complexes:	Co-fractionation	MS	(CoFrac-MS)	
•  Comprehensive	interactome	map	from	a	single	experiment		

(<	100	MS	measurements)	
•  Distinguish	true	interactions	from	random	co-elutions	

•  Protein-drug	interactions:	thermal	proteome	profiling	(TTP)	
•  Many	metabolites	are	tested	against	thousands	of	proteins	
•  How	to	estimate	significance?	

Eduard		
Huttlin	

Isabell	
Bludau	

Dominic		
Helm	
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From IP’s to Interactomes: 
Computational Analysis of 
Large-scale AP-MS Data

Ed Huttlin
Harvard Medical School

Department of Cell Biology
Boston, Massachusetts



The Achilles Heel of AP-MS: Which Interactions are Real?



Computational Strategies for Identifying Interacting Proteins

COMPARISON WITH NEGATIVE CONTROLS

Examples: QUBIC, SAINT, many others

Negative control IP’s are used to 
Define background. Proteins present

At higher abundance than background
Are assumed to be interactors. 

COMPARISON ACROSS UNRELATED IP’s

Background is assumed to be constant across IP’s. 
Interacting proteins are found by seeking proteins

Whose abundance is increased above their 
Average across many IP’s of unrelated baits.

Examples: CompPASS, SAINT, MiST, HGScore, 
Socio-affinity Index 



Bait 1 Bait 2 Bait 3 Bait 4 Bait k

Interactor 1

Interactor 2

Interactor 3

Interactor 4

Interactor m

X1,1 X2,1 X3,1 X4,1 Xk,1

X1,2

X1,3

X1,4

X1,m

X2,2 X3,2 X4,2 Xk,2

X2,3 X3,3 X4,3 Xk,3

X2,4 X3,4 X4,4 Xk,4

X2,m X3,m X4,m Xk,m

Stats Table

Xi,j = Spectral counts for interactor j with bait i

Z = 
Xi,j - X

S

Z-Score WDN-Score

X = Average spectral counts for protein across baits
Xi,j = Spectral counts for interactor j with bait i
S = Standard Deviation spectral counts across baits

N = Number of runs
n = Number of runs in which the protein is found
p = Number of replicates observed (1 or 2)

N
n

S

X

p
Xi,jWDN =

CompPASS Scoring Algorithm

Is the protein more 
abundant than usual 

in this IP?

How frequently 
is this protein 
detected? Is
It detected 

reproducibly?

CompPASS: Sowa et al. (2009) Cell, 138:389-403.
Wade HarperMat Sowa



An R Implementation of CompPASS

https://github.com/dnusinow/cRomppass

http://bioplex.hms.harvard.edu/comppass/David Nusinow



From IP’s to Interactomes: Meeting the Challenges of Scale

BioPlex 1.0: Huttlin et al. (2015) Cell, 162:425-440.
BioPlex 2.0: Huttlin et al. (2017) Nature, 545:505-509.
BioPlex 3.0: In Preparation.

CHALLENGES OF SCALE

1. 
How to do 

all those searches?

2. 
How to ensure quality 

across thousands of runs?

3. 
How to minimize errors

due to false positive ID’s?

4. 
How to rapidly and accurately

identify interactors?
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Data processing overview
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For every run.

Automated and Adaptive Run QC



Automatic Notification of Problematic Runs



Relative Protein Abundances across IP’s

Both bona fide interactors and false positives appear in AP-MS experiments
as “rare” events that score as likely interactions. Unless precautions are taken, 

enrichment of these false positives can cause surprisingly high 
false discovery rates among AP-MS datasets.  

Distinguishing Interactors from Background and False Positives



• A key challenge of AP-MS is distinguishing the few true interacting proteins (~1-2%)
from a much larger number of background proteins (~98%), false positives (~1%), 
and other experimental artifacts.

• While existing algorithms for AP-MS distinguish enriched interacting proteins from 
nonspecific background, CompPASS-Plus uniquely accounts for false positive ID’s.

Distinguishing Interactors from Background and False Positives



CompPASS-Plus for Interactor Identification

• CompPASS-Plus is a Naive Bayes classifier that extends CompPASS for improved
Identification of interacting proteins.

• Features include standard CompPASS scores as well as customized scores.  

• Training data is obtained from STRING/GeneMania and from Target/Decoy methods

• Leave-one-out cross-validation is incorporated at the 96-well-plate level for classification.



CORUM Validation



BioPlex Associates New Proteins with Known Complexes

Chantranupong (2016) Cell, 165:153.
Saxton (2016) Nature, 536:229. Miles (2017) eLife, 6:e22693.

Anikster et al. (2017) 
Am. J. Hum. Genet. 100, 257.

DNAJC12

PAH

TPH1/2 TH

Trp Tyr

Phe Tyr

Trp-5OH L-dopa

DopamineSerotonin

Gu et al. (2017) Science, 358:813. Nguyen (2017) Science, 357:eaan0218. Rebsamen (2015) Nature, 519:477.



• Separating true interacting protein partners from background is 
a serious challenge for AP-MS 

• A variety of algorithms have been developed to address this 
that accommodate a variety of experimental designs

• Performing AP-MS at truly large scale leads to additional 
challenges that must be addressed.

• Our CompPASS-Plus algorithm has enabled us to efficiently 
identify interacting proteins and produce reliable maps of the 
human interactome in multiple cell types.

Summary



Isabell	Bludau	
ETH	Zurich	



Underlying	technology	for	data	acquisition:		
Protein	co-fractionation	mass	spectrometry		

Native	complex	
fractionation	

(SEC,	IEX,	BN,	...)	

Bottom-up	LC-MS/MS	

Fractions	
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Andersen	et	al.	(2003),	Dunkley	et	al.	(2004),	Foster	et	al.	(2006),	Scott	et	al.	(2015),	Wan	et	al.	(2015)	
	



Native	complex	
fractionation	

(SEC,	IEX,	BN,	...)	

Bottom-up	LC-MS/MS	

Fractions	
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Benefits:	

+  Independent	of	genetic	engineering	or	antibody	
availability	

+  Parallel	detection	of	protein	complexes	on	a	
proteome-wide	scale	

Andersen	et	al.	(2003),	Dunkley	et	al.	(2004),	Foster	et	al.	(2006),	Scott	et	al.	(2015),	Wan	et	al.	(2015)	
	

Underlying	technology	for	data	acquisition:		
Protein	co-fractionation	mass	spectrometry		



Established	data	analysis	strategy:	
Protein	correlation	profiling		
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Data	properties:	
•  Profiles	for	thousands	of	proteins	(~5000)	
•  Limited	peak	capacity	(~20-30)		
	
Consequences:	
•  Random	co-elution	of	proteins	
•  Limited	selectivity	and	sensitivity	
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Pairwise	scoring	 Clustering	Protein	correlation	profiling	

Scott	et	al.	(2015),	Wan	et	al.	(2015),	Stacey	et	al.	(2017)	

PrInCE		(Stacey	et	al.	2017)	
	



Heusel	&	Bludau	et	al.	(2019)	

Targeted	anaysis	strategy:	
Complex-centric	proteome	profiling	

Native	complex	
fractionation	

(SEC,	IEX,	BN,	...)	

Bottom-up	LC-MS/MS	

SEC	fractions	
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Heusel	&	Bludau	et	al.	(2019)	

Targeted	anaysis	strategy:	
Complex-centric	proteome	profiling	

Prior	information:	
protein	complex		DB	

Native	complex	
fractionation	

(SEC,	IEX,	BN,	...)	

Bottom-up	LC-MS/MS	

SEC	fractions	
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		CCprofiler	
https://github.com/CCprofiler/	

ü  Automated	software	for	targeted	complex-centric	analysis	
ü  Parallel	and	sensitive	protein	complex	detection	
ü  Complex-level	FDR	estimation	



Decoys	
•  Generate	matching	decoy	for	each	target	
(same	complex	size	distribution)	

•  Require	minimum	network	distance	
between	decoy	proteins	to	avoid	overlap	
with	targets	

Inf	

Inf	3	

Targets	
a)  Defined	hypotheses	(e.g.	CORUM)	

	
b)  Interaction	network		

(e.g.	AP-MS,	BioPlex,	StringDB)	
Select	1st	degree	neighbors	of	each	
protein	as	one	target	hypothesis	

	

		CCprofiler	
https://github.com/CCprofiler/	

Complex-centric	proteome	profiling:	
Decoy	based	FDR	estimation	



		CCprofiler	
https://github.com/CCprofiler/	

Signal scoring Complex 
hypotheses 

automated scoring 
CCprofiler 

manual annotation 

MORUC 

CORUM 

Decoy generation 
CCprofiler 

CORUM 

Complex-centric	proteome	profiling:	
Benchmark	



Signal scoring Complex 
hypotheses 

automated scoring 
CCprofiler 

manual annotation 

MORUC 
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Decoy generation 
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Manual benchmark  
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Complex-centric	proteome	profiling:	
Benchmark	 		CCprofiler	

https://github.com/CCprofiler/	



Heusel	&	Bludau	et	al.	(2019)	

Targeted	anaysis	strategy:	
Complex-centric	proteome	profiling	

Prior	information:	
protein	complex		DB	

Native	complex	
fractionation	

(SEC,	IEX,	BN,	...)	

Bottom-up	LC-MS/MS	

SEC	fractions	
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		CCprofiler	
https://github.com/CCprofiler/	

ü  Automated	software	for	targeted	complex-centric	analysis	
ü  Parallel	and	sensitive	protein	complex	detection	
ü  Complex-level	FDR	estimation	



Heusel	&	Bludau	et	al.	(2019)	

Targeted	anaysis	strategy:	
Complex-centric	proteome	profiling	

ü  Automated	software	for	targeted	complex-centric	analysis	
ü  Parallel	and	sensitive	protein	complex	detection	
ü  Complex-level	FDR	estimation	

		†	These	authors	contributed	equally	to	this	work.		



Detection of 572 out of 1753 
CORUM complexes (5% FDR) 

HEK293	soluble	proteome	

Complex-centric	proteome	profiling	by	SEC-SWATH-MS	
	
ü  Detect	and	quantify	hundreds	

of	protein	complexes	

572 
complexes 

Heusel	&	Bludau	et	al.	(2019)	

-  SEC	fractionation:	1	mg,	Yarra-SEC-4000,	81	fractions	
-  SWATH-MS:	Triple-TOF	5600,	64	vw,	120	min	gradient	
➤  Consistent	quantification	of	4916	proteins	



Complex-centric	proteome	profiling	by	SEC-SWATH-MS	
	
ü  Detect	and	quantify	hundreds	

of	protein	complexes	

ü  Investigate	sub-complexes	
and	assembly	intermediates	

HEK293	soluble	proteome	

Proteasome	assembly		
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Heusel	&	Bludau	et	al.	(2019)	
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Complex-centric	proteome	profiling	by	SEC-SWATH-MS	
	
ü  Detect	and	quantify	hundreds	

of	protein	complexes	

ü  Investigate	sub-complexes	
and	assembly	intermediates	

HEK293	soluble	proteome	

SEC	fractions	
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Heusel	&	Bludau	et	al.	(2019)	



ü  Detect	and	quantify	hundreds	
of	protein	complexes	

ü  Investigate	sub-complexes	
and	assembly	intermediates	

ü  Evaluate	global	proteome	
assembly	characteristics	

Complex-centric	proteome	profiling	by	SEC-SWATH-MS	
	

➤  The	majority	of	the	proteins	appear	in	at	least	one	assembled	state	

➤  Many	proteins	are	observed	in	multiple	distinct	assembly	states	

5503	elution	peaks	
for	4065	proteins	

SEC	fractions	
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assembled	 monomeric	

log(MW)	

HEK293	soluble	proteome	

only		
monomeric	

34%	

Assembled	
66%	

multiple		
peaks	
27%	

single	peak	
73%	

Heusel	&	Bludau	et	al.	(2019)	



SEC	fractions	
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Current	developments:	
Quantitative	comparison	of	protein	complexes	across	conditions	



pr
ot

ei
n 

in
te

ns
ity

 

control
depleted

33625 9396 2311 646 159 44 11 3

1 11 21 31 41 51 61 71

0e+00

1e+06

2e+06

3e+06

0e+00

1e+06

2e+06

3e+06

MW (kDa)

fraction

in
te

ns
ity

DDX20

GEMIN2

SNRPD1

SNRPD2

SNRPD3

SNRPF

SNRPG

SMN complex
 
 
 SMN	complex	

control
depleted

33625 9396 2311 646 159 44 11 3

1 11 21 31 41 51 61 71

0e+00

1e+06

2e+06

3e+06

0e+00

1e+06

2e+06

3e+06

MW (kDa)

fraction

in
te

ns
ity

DDX20

GEMIN2

SNRPD1

SNRPD2

SNRPD3

SNRPF

SNRPG

SMN complex
 
 
 

SEC fractions 

SEC	fractions	

Pr
ot
ei
n	
in
te
ns
ity

	

SEC	fractions	

Pr
ot
ei
n	
in
te
ns
ity

	

Co
nd

iti
on

	A
	

Co
nd

iti
on

	B
	

Splicing	efficient	and	PRPF8	depleted	human	cells	

➤  110	out	of	553	complexes	are	differentially	abundant	(FDR	<	0.05)	
➤  Spliceosome	biogenesis	is	down-regulated	

Current	developments:	
Quantitative	comparison	of	protein	complexes	across	conditions	
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Eukaryotic	translation	initiation	factor	3	subunit	C	(EIF3C)	

SEC fractions 

Poster	ThP626	

Current	developments:	
Data-driven	detection	of	assembly	specific	proteoforms	

‘Proteoforms’			=			protein	variants	that	originate	from	the	same	gene,		
	 	 	but	that	have	a	unique	amino	acid	sequence	and	post-translational	modifications	

➭  Make	use	of	peptide-level	information	
available	in	SEC-SWATH-MS		

➭  Distinguish	assembly	specific	
proteoforms	based	on	unique	peptides	

ü  Parallel	detection	of	1,378	assembly	
specific	proteoforms	



Current	developments:	
Network-centric	analysis	

SEC	analysis	toolkit	(SECAT)	
➭  Determine	perturbed	nodes	in	the	

		PPI	interaction	network	

Rosenberger	et	al.	(in	preparation)	



ü  Consistent	detection	and	quantification	of	100s	protein	
complexes	on	a	proteome-wide	scale	

ü  Controlled	complex-level	FDR	

ü  Sub-complex	resolution	

ü  Coming	next:	quantitative	complex	comparison,		
proteoform	detection,	network-centric	analysis	

SEC	fractions	
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		CCprofiler	
https://github.com/CCprofiler/	

Requirements:	
•  Quantitative	peptide	or	protein	matrix	(DIA	or	DDA)	
•  Annotation	table	that	matches	MS	runs	to	the	sampled	fractions	
•  Prior	protein	connectivity	information	(e.g.	CORUM,	BioPlex,	StringDB)	

Take	home	message:	
Complex-centric	analysis	of	CoFrac-MS	data	



Aebersold	lab	
•  Ruedi	Aebersold	
•  Ben	Collins	
•  Moritz	Heusel	
•  Max	Frank	
•  George	Rosenberger	
•  Claudia	Martinelli	
•  Peng	Xue	
•  Robin	Hafen	
•  Amir	Banaei-

Esfahani	
•  Audrey	van	Drogen	
•  Yansheng	Liu	
•  Matthias	Gstaiger	

External	collaborators	
•  Hannes	Röst	
•  Yuija	Cai	
•  Vihandha	Wickramasinghe	
•  Ashok	Venkitaraman	

Thank	you	for	your	attention!	
	



Dominic	Helm	
EMBL	Heidelberg		
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ASMS 2019 – MS-Based interactomics

dominic helm

Thermal proteome profiling for interactomics
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Prelude: Isobarquant

Franken et al., 2015, Nature Protocols



Protein/drug interactions in living cells proteome-wide
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Protein-Drug interaction: Staurosporine targets
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Melting curve fits

• Fit parametric sigmoidal curves for each condition

• Estimate melting points

• Compare melting points between the treatment

conditions using a z-Test

Franken et al., 2015, Nature Protocols



Problems with the melting point (Tm) comparison

Several reasons can lead to Tm shift being

insufficient to detect ligand effect:

• Small but reproducible shifts (BTK)

• Shifts in non-centered curve areas (PRKCB)

• Melting points outside the temperature range 

(NQO2) 

Childs*, Bach*, Franken* et al. (2018) bioRxiv



Our solution: Functional melting curve analysis

Fit two competing models per protein

Compute F-statistic:

𝐹 =
RSS0 − RSS1

RSS1

Karsten Bach Dorothee Childs Holger Franken

RSS: residual sum of squares

R R

Childs*, Bach*, Franken* et al. (2018) bioRxiv



Functional melting curve analysis

New method captures old targets 

+ cases with more subtle effects

Childs*, Bach*, Franken* et al. (2018) bioRxiv



More sensitive experimental design: 2D-TPP
Compound concentration-dependent profiling over a range of temperatures

Becher I, … , Bantscheff M*, Savitski MM* Nature Chemical Biology 2016
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Instead of statistics: More experiments – more data – more targets



0 2 ATP (mM)

Model system Metabolite and 

heat treatment
Data analysisMS-analysis

FDR controlled dose-response assessment

pEC50 – measure of affinity

Protein-Metabolite interaction: Adenosine triphosphate (ATP)

Sridharan S#, Kurzawa N#, Werner T, Guenthner I, Helm D, Huber W, Bantscheff M*, Savitski MM* Nature Communications 2019



Functional 2D-TPP data analysis using sliding temperature 

windows

• Fit models to adjacent temperatures

• H0 Model: intercept model (blue)

• H1 Model: dose-response curve (orange)

• Compare goodness of fit

• Summarize per protein score Fcomb

• Estimate the FDR for given scores by

repeating the procedure with permuted

data and ranking results jointly
RSS: residual sum of squares

RSS RSS

RSSRSS



Validation of the approach on drug datasets with known targets

• Ampicillin treated E. coli lysate

• beta-lactam antibotic, inhibting bacterial cell-

wall synthesis

• Known targets: MrcA, FtsI, DacB & PbpG

• Other binders: AmpC

Mateus et al. Mol. Sys Biol. 2018
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• Unbiased 

• Proteome wide 

• Versatile 

Thermal proteome profiling 
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Thank you for your attention!


	ASMS_2019_BioInfoWorkshop_intro
	Huttlin_ASMS_Workshop_2019_FINAL_workshopSummary
	ASMS_2019_BioInfoWorkshop_Isa
	BioITworkshop_2019_DH_190605

