Remote Posters: Interactive Session – PARALLEL 1

Install the latest version of Zoom on your device. You need the latest version of Zoom installed on your laptop in order to utilize the self-select breakout room feature. You do not need a paid Zoom account, a free account is fine.

- **JOIN THE ZOOM MEETING** and enter the main meeting. Please share your video & audio to foster interactions!
- Breakout rooms will be labeled with poster code (e.g. FP 009 or FP 310). Presenters will be in their breakout room with their screen shared and ready to ‘present’ to you or answer questions.
- Using the table of contents below identify the breakout room you wish to visit.

- You may enter and exit breakout rooms as you wish. Note that each time you exit a breakout you will land back in the main meeting where you can choose a new breakout from the list.

Detail of poster titles and authors are provided on the next pages. If you wish to read an abstract, please consult the online planner or mobile app. Simply enter the poster code in the ‘Search’ to quickly locate corresponding abstract.

Table of Contents

<table>
<thead>
<tr>
<th>Topic</th>
<th>Poster Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient Ionization: Applications</td>
<td>FP 009</td>
</tr>
<tr>
<td>Ambient Ionization: Fundamentals and Instrumentation</td>
<td>FP 014.5; FP 016</td>
</tr>
<tr>
<td>Art, Archaeology & Paleontology</td>
<td>FP 039</td>
</tr>
<tr>
<td>Biomarkers: Discovery</td>
<td>FP 062</td>
</tr>
<tr>
<td>Biomarkers: Quantitative Analysis</td>
<td>FP 070; FP 075</td>
</tr>
<tr>
<td>Carbohydrates</td>
<td>FP 087; FP 089; FP 090</td>
</tr>
<tr>
<td>Clinical Analysis</td>
<td>FP 103</td>
</tr>
<tr>
<td>Data-Independent Acquisition</td>
<td>FP 106; FP 114</td>
</tr>
<tr>
<td>Disease Biomarkers</td>
<td>FP 115.5</td>
</tr>
<tr>
<td>Drug and Metabolite Analysis</td>
<td>FP 133; FP 139</td>
</tr>
<tr>
<td>Education: Teaching MS and Teaching with MS</td>
<td>FP 143.5</td>
</tr>
<tr>
<td>Energy: Petroleum and Biofuels</td>
<td>FP 149</td>
</tr>
<tr>
<td>Environmental: General</td>
<td>FP 160; FP 167; FP 168</td>
</tr>
<tr>
<td>Environmental: Pharmaceuticals and Pesticides</td>
<td>FP 170</td>
</tr>
<tr>
<td>Food Safety & Chemistry: Foodomics, Allergens, Bacteria, Foods, and Supplements</td>
<td>FP 181; FP 189</td>
</tr>
<tr>
<td>Food Safety: General</td>
<td>FP 198; FP 200</td>
</tr>
<tr>
<td>Forensics</td>
<td>FP 217; FP 218; FP 221</td>
</tr>
<tr>
<td>Fundamentals: Ionization</td>
<td>FP 241</td>
</tr>
<tr>
<td>Fundamentals: Native MS</td>
<td>FP 246</td>
</tr>
<tr>
<td>Glycoproteins</td>
<td>FP 274</td>
</tr>
<tr>
<td>H/D Exchange: Protein Structure/Function</td>
<td>FP 285</td>
</tr>
<tr>
<td>Imaging MS: Instrumentation</td>
<td>FP 310</td>
</tr>
<tr>
<td>Imaging MS: Method Development</td>
<td>FP 319; FP 322; FP 323; FP 326; FP 329</td>
</tr>
<tr>
<td>Imaging MS: Pharmaceuticals, Metabolites, and Lipids</td>
<td>FP 336; FP 341</td>
</tr>
<tr>
<td>Informatics: Algorithms and Statistical Advances</td>
<td>FP 349; FP 351</td>
</tr>
<tr>
<td>Informatics: Multiomics Integration</td>
<td>FP 363</td>
</tr>
<tr>
<td>Informatics: Peptide ID and Quantification</td>
<td>FP 365.5; FP 366; FP 368; FP 371</td>
</tr>
<tr>
<td>Informatics: Workflow and Data Management</td>
<td>FP 378; FP 379; FP 382</td>
</tr>
<tr>
<td>Session Title</td>
<td>Poster Title</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Ambient Ionization: Applications (REMOTE POSTERS)</td>
<td>Three dimensional in vitro assay to quantitate cell mixtures ablated during rapid evaporative ionization mass spectrometry (REIMS) analyses.; Rachel Rubino; Martin Kaufmann; Amoon Jamzad; Natasha Iaboni; Manuela Kunz; Kevin Yi Mi Ren; John F Rudan; Parvin Mousavi; Christopher J.B. Nicol; Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, Kingston, ON; Department of Medicine, Queen's University, Kingston, ON; School of Computing, Queen's University, Kingston, ON; Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON; Department of Surgery, Queen's University, Kingston, ON</td>
</tr>
<tr>
<td>Ambient Ionization: Fundamentals and Instrumentation (REMOTE POSTERS)</td>
<td>High Spatial-resolution Mass Spectrometry Imaging of Biological Tissues Using a Surface Microfluidic Probe; Xiangtang Li; Julia Laskin; Purdue university, west lafayette, IN; Purdue University, West Lafayette, IN</td>
</tr>
<tr>
<td>Art, Archaeology & Paleontology (REMOTE POSTERS)</td>
<td>Modelling protein decay using bottom-up proteomics; Bharath Nair; Meaghan Mackie; Zilu Ye; Jesper Olsen; Matthew Collins; Globe Institute, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark; McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, United Kingdom</td>
</tr>
<tr>
<td>Biomarkers: Discovery (REMOTE POSTERS)</td>
<td>Identification of a novel urinary compound, hexosamine-valine-isoleucine-OH, in mice exposed to low-dose rate gamma radiation; Evan L Pannkuk; Evagelia C Laiakis; Michael Girgis; Guy Y Garty; Shad R Morton; Monica Pujol-Canadell; Shanaz A Ghandhi; Sally A Amundson; David J Brenner; Albert J Fornace, Jr.</td>
</tr>
<tr>
<td>Biomarkers: Quantitative Analysis (REMOTE POSTERS)</td>
<td>Improving the Athlete Biological Passport by single-run LC-MS/MS analysis of Blood Steroid Profile novel markers; Federico Ponsetto; Antonello Nonnato; Fabio Settanni; Raul Nicoli; Tiia Kuuranne; Ezio Ghigo; Giulio Mengozi; Department of Medical Sciences, University of Turin, Turin, Italy; City of Health and Science University Hospital, Turin, Italy; Swiss Laboratory fo Doping Analyses, Lausanne, Switzerland</td>
</tr>
<tr>
<td>Carbohydrates (REMOTE POSTERS)</td>
<td>Multiplexing vibrational ion spectroscopy for high-throughput identification of mobility-separated species in complex mixtures; Vasyl Yatsyna; Ali Abikhodr; Thomas R. Rizzo; Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Department of Physics, University of Gothenburg, Gothenburg, Sweden</td>
</tr>
<tr>
<td></td>
<td>A new approach for identifying positional isomers of glycans cleaved from monoclonal antibodies; Irina Diukova; Ahmed Ben Faleh; Stephan Warnke; Natalia Yalovenko; Vasyl Yatsyna; Priyanka Bansal; Thomas Rizzo; EPFL, LCPM, Lausanne, Switzerland</td>
</tr>
<tr>
<td></td>
<td>Combining SLIM-based ion mobility with on-board CID and cryogenic IR fingerprinting for the identification of N-glycan positional isomers; Priyanka Bansal; Ahmed Ben Faleh; Stephan Warnke; Thomas R. Rizzo; 1EPFL, Lausanne, Switzerland</td>
</tr>
</tbody>
</table>
Clinical Analysis (REMOTE POSTERS)

FP 103 The amyloid proteome—investigating more than simple passive bystanders of a disease; **Juliane Gottwald**¹; Hans-Michael Behrens¹; Eva L. Gerick¹; Tomas Koudelka²; Annelie Lux³; Georg J. Rottenacher³; Jan Schürmann⁴; Christian Treitz⁵; Andreas Tholey⁶; Christoph Röcken⁷; ¹Department of Pathology, Christian-Albrechts-University Kiel, Kiel, Germany; ²Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany; ³Center for Integrated Protein Science Munich at the Department of Chemistry, Technical University of Munich, Garching, Germany

Data-Independent Acquisition (REMOTE POSTERS)

FP 106 Comprehensive drug screening in whole blood using IDIA mode utilizing the combination of probe ESI and quadrupole time-of-flight mass spectrometer; **Hidekazu Saiki**¹; Eishi Imoto²; ¹Shimadzu Corp., Kyoto, Japan; ²Shimadzu corp., Kyoto, Japan

FP 114 Data independent acquisition for DNA adductomics and its application in amphipods; **Giulia Martella**¹; Elena Gorokhova²; Pedro Sousa³; Brita Sundelin³; Hitesh Motwani³; ¹Stockholm University, Stockholm, Sweden; ²Stockholms Universitet, Stockholm, Sweden

Disease Biomarkers (REMOTE POSTERS)

FP 115.5 Proteomic Analysis of Paralichthys Olivaceus with viral hemorrhagic septicemia virus (VHSV) infection; **Miseon Jeong**¹; Junghoon Kang¹; Wonryeon Cho¹; ¹Wonkwang University, Iksan, South Korea

Drug and Metabolite Analysis (REMOTE POSTERS)

FP 133 Simultaneous analysis of remdesivir and its metabolite in human plasma using fully automated sample preparation LC/MS/MS system; **Toshikazu Minohata**¹; Eishi Imoto²; ¹Shimadzu Corp., Kyoto, Japan; ²Shimadzu corp., Kyoto, Japan

FP 139 A Tool for Automated Determination and Profiling of Therapeutic Oligonucleotide Impurities and Metabolites in LC-HRMS Data; Eva Duchoslav⁴; Harini Kaluarachchi⁵; Lyle Burton⁵; Thanh Ngu⁶; Peter Liuni⁷; Jason Causon⁸; ¹SCIEX, Concord, ON

Education: Teaching MS and Teaching with MS (REMOTE POSTERS)

FP 143.5 FTMS Teaching Pack: an interactive resource to teach FTMS fundamentals; **Olga Vvedenskaya**¹; Anton N. Kozhinov¹; Konstantin O. Nagornov¹; Yury O. Tsybin¹; ²Spectroswiss, Lausanne, Switzerland

Energy: Petroleum and Biofuels (REMOTE POSTERS)

FP 149 Comparison of direct and indirect analysis of crude oil molecules adsorbed onto carbonate rock surface using LDI–FTICR MS; **Nathaniel Terra Telles Souza**¹, ², ³, ⁴; Leticia Ligiero², ³, ⁴; Nicolas Agenet⁵; Marie Hubert-Roux³, ⁴; Carlos Afonso³, ⁴; Ryan P Rodgers⁶, ⁷; ¹IPREM, Université de Pau et des Pays de l’Adour, Pau, France; ²Total S.A. Exploration & Production–Lacq Research Center (PERL), Lacq, France; ³Normandie Université, COBRA UMR 6014 et FR 3038 Univ Rouen, Mont Saint Aignan, France; ⁴International Joint Laboratory–iC2MC, TotalEnergies - TRTG Refining and Chemicals, Gonfreville l’Orcher, Harfleur, France; ⁵TOTAL SA, Centre Scientifique et Technique Jean Féger, Pau, France; ⁶National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL

Environmental: General (REMOTE POSTERS)

FP 160 Laser diode thermal desorption to the rescue: ultra-fast analysis of a chemical stressor of a vulnerable species of frog; **Cassandra Guérette**¹; Cédric Boué²; **Pedro A. Segura**³; ¹Université de Sherbrooke, Sherbrooke, QC; ²Nature-Action Québec, Béloïl, QC

FP 167 Non-target quantification of water contaminants based on chromatographic and mass spectrometric properties using LC/ESI/HRMS; **Emma H Palm**¹; Louise M E Malm¹; Miklós Péter Mohai¹; Anneli Kruve¹; ¹Stockholm University, Stockholm, Sweden
FP 168 Method development and analysis of textile dye biodegraded metabolites with UPLC-FTICR-MS/MS and environmental toxicological study; Rafiqul Alam1; Syful Islam1; Nissa Nurfarin2; Dede Heri Yuli Yanto2; Md Badrul Alam3; Sang Han Lee3; Sunghwan Kim1,4; 1Department of Chemistry, Kyungpook National University, Daegu, South Korea; 2Research Center for Biomaterials, Indonesian Institute of Sciences (LIPI), Bogor, Indonesia; 3Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu, South Korea; 4Mass Spectrometry Converging Research Center and Green-Nano Materials Research Center, Daegu, South Korea

Environmental: Pharmaceuticals and Pesticides (REMOTE POSTERS)

FP 170 Identifying the impact of a pandemic on pharmaceutical river contamination by LC-MS/MS; Stéphane Moreau1; Neil J Loftus2; Alan Barnes3; Melanie Egli3; Leon Barron3; 1Shimadzu Europa GmbH, Duisburg, Germany; 2Shimadzu MS/BU, Manchester, United Kingdom; 3Imperial College London, London, United Kingdom

Food Safety & Chemistry: Foodomics, Allergens, Bacteria, Foods, and Supplements (REMOTE POSTERS)

FP 181 Profiling of Vitamin B in Fortified Daily Nutritional Supplements Using LC-MS/MS; Vikrant Goel1; Saikat Banerjee2; 1Agilent Technologies, Gurgaon, India; 2Agilent Technologies, Haryana, India

FP 189 Milk metabolite phenotyping profiling of bovine, ovine, buffalo, caprine and donkey by LC-MS/MS QTOF analysis; Alan Barnes1; Neil J Loftus1; Anastasia Pesiridou2,3,4; Ioannis Sampsonidis4,5; Georgios Arsenos4,6; Georgios Theodoridis2,3,4; Shimadzu, Manchester, United Kingdom; 2Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece; 3Biomic_Auth, Bioanalysis and Omics Laboratory, CIRI-AUTH, Thessaloniki, Greece; 4FoodOmicsGR_Research Infrastructure, Auth Node, CIRI-AUTH, Thessaloniki, Greece; 5Department of Nutritional Sciences & Dietetics, International Hellenic University, Thessaloniki, Greece; 6Department of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece

Food Safety: General (REMOTE POSTERS)

FP 198 A Water Analysis Platform Pesticides and PPCPs: LC-MS/MS screening of more than 400 pesticides in drinking Water; Doriane Toinon1; Aurore Jaffuel1; Mikeal Levi2; Yoshihiro Hayakawa1; Shimadzu Corporation, Kyoto, Japan; 1Shimadzu Corporation, Hadano-city, Japan; 2Shimadzu Corporation, Kyoto, Japan

FP 200 Highly sensitive simultaneous analysis of tetracyclines and β-lactams antibiotics in edible meat by LC/MS/MS; Ayaka Minamimoto1; Manami Kobayashi1; Junichi Masuda1; Yoshihiro Hayakawa1; Shimadzu Corporation, Hadano-city, Japan

Forensics (REMOTE POSTERS)

FP 217 Identification and Characterization of a Novel Synthetic Opioid, U-10 by DART-MS; Henry West1; John Fitzgerald1; Katherine Hopkins5; Michael Leeming4; Gavin E Reid1; 1The University of Melbourne, Melbourne, Australia

FP 218 ‘Close to Real Time’ Trace Residue Analysis of Discarded Drug Packaging Samples at Large Public Events; Henry West1; John Fitzgerald1; Katherine Hopkins5; Eric Li3; Nicholas Clark3,4; Stephanie Tzanetis5,6; Shaun L Green1,7; Gavin E Reid1; 1University of Melbourne, Parkville, Australia; 2Agilent Technologies, Mulgrave, Australia; 3North Richmond Community Health, Richmond, Australia; 4Royal Melbourne Hospital, Parkville, Australia; 5Harm Reduction Victoria, North Melbourne, Australia; 6Harm Reduction Australia, Leura, Australia; 7Victorian Poisons Information Centre, Austin Health, Heidelberg, Australia

FP 221 Multi-Target Screening and Quantitative Method Validation of 24 Drugs in Synthetic Urine Using Automated Sample Preparation Coupled Directly to LC-MS/MS; Kate (xiaomeng) Xia1; Sarah R. Olive1; Mohamed Nazim Boutaghoul1; Rachel Lieberman1; Shimadzu Scientific Instruments, Columbia, MD
<table>
<thead>
<tr>
<th>Concurrent Session and Poster Title</th>
<th>Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundamentals: Ionization (REMOTE POSTERS)</td>
<td>FP 241 Integrated Ion Dynamics Simulations of Highly Charged Droplets in Atmospheric Pressure Ion Sources; Robin Hillen¹; Clara Markert¹; Chris Heintz²; Laura Lehmann¹; Peter Vetter¹; Walter Wissdorf³; Hendrik Kersten¹; Thorsten Benter¹; ¹Bergische Universität Wuppertal, Wuppertal, Germany</td>
</tr>
<tr>
<td>Fundamentals: Native MS (REMOTE POSTERS)</td>
<td>FP 246 Sensitivity Improvement on Mega-Dalton Protein Measurement; Feng Zhong¹; Mircea Guna¹; Igor Chernushevich¹; Bill Loyd¹; Doug Simmons¹; Pavel Ryumin¹; ¹SCIEX, Concord, ON</td>
</tr>
<tr>
<td>Glycoproteins (REMOTE POSTERS)</td>
<td>FP 274 Introducing a Novel Software Containing an Experimental High-Resolution Mass Spectral Library ofN-Glycans and Automated Glycan Mapping Using UHP; Rupanjan Goswami¹, ²; Karthik Kolli¹, ²; Sharath A. K. ¹; Arun Apte²; ²PREMIER Biosoft, Indore, India; ³PREMIER Biosoft, San Francisco, California</td>
</tr>
<tr>
<td>H/D Exchange: Protein Structure/Function (REMOTE POSTERS)</td>
<td>FP 285 Structural mass spectrometry approaches for the characterization of the interaction between protein arginine methyl transferase 2 and its partner RSF1; Marie Ley¹, ²; Vincent Cura³; Nathalie troffer-charlier³; Jean Cavourél³; Sarah Cianférar³ ²; ¹Laboratoire de Spectrométrie de masse BioOrganique (LSMBO), IPHC, CNRS, UMR 7178, Université de Strasbourg, Strasbourg, France; ²Infrastructure Nationale de Protéomique ProFI – FR2048, Strasbourg, France; ³Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS 7104, Inserm U964, Illkirch, France; ⁴Laboratoire de Spectrométrie de masse BioOrganique (LSMBO), IPHC, CNRS, UMR 7178, Université de Strasbourg, Strasbourg, France</td>
</tr>
<tr>
<td>Imaging MS: Instrumentation (REMOTE POSTERS)</td>
<td>FP 310 High-resolution AP-SMALDI imaging instrumentation for the study of complex or very small biological objects; Bernhard Spengler¹, ²; Karl-Christian Schäfer²; Max A. Müller²; Julian Schneemann¹; Kerstin Strupat³; ¹Justus Liebig University, Giessen, Germany; ²TransMIT GmbH, Giessen, Germany; ³Thermo Fisher Scientific (Bremen) GmbH, Bremen, Germany</td>
</tr>
<tr>
<td>Imaging MS: Method Development (REMOTE POSTERS)</td>
<td>FP 319 A combination of single-cell MALDI-MS imaging and fluorescence microscopy to explore molecular heterogeneity in cell cultures; Tanja Bien¹, ²; Krischan Koerfer³; Klaus Dreisewerd¹, ²; Jens Soltwisch¹, ²; ¹Institute for Hygiene, University of Muenster, Muenster, Germany; ²Interdisciplinary Center for Clinical Research (IZKF), University of Münster, Muenster, Germany; ³Institute for Psychology and Otto Creutzfeldt Center for Cognitive and Behavioural Neuroscience, University of Münster, Muenster, Germany</td>
</tr>
<tr>
<td></td>
<td>FP 322 Multi-matrix imaging of cholesterol; Bryn Flinders¹; Sara Mandic¹, ²; Vanessa Arantes Figueira¹; Sean C.H. Jensen³; Ron M.A. Heeren⁴; Ana Miguel Fonseca Pego⁵; ¹Hair Diagnostix, Dutch Screening Group, Maastricht, Netherlands; ²Maastricht University, Maastricht, Netherlands; ³Hair Diagnostix, Dutch Screening Group, Maastricht, Netherlands; ⁴Maastricht MultiModal Molecular Imaging (M4i) institute, Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, Netherlands</td>
</tr>
<tr>
<td></td>
<td>FP 323 Spatially Resolved Chemical Profiling of Plant Root Exudates Via Droplet-Based Liquid Microjunction Surface Sampling Probe-HPLC-ESI-MS; Vilmos Kertesz¹; John F. Cahill¹; Scott T. Retterer¹; Muneeba Khalid¹; Courtney L. Walton¹; ¹Oak Ridge National Laboratory, Oak Ridge, TN</td>
</tr>
<tr>
<td></td>
<td>FP 326 Direct imaging of plant metabolites in the rhizosphere using laser desorption ionization ultra-high resolution mass spectrometry; Martin Lohse¹; Rebecca Haag¹, ²; Eva Lippold³; Doris Vetterlein³, ⁴; Thorsten Reenstma¹, ⁵; Oliver J. Lechtenfeld¹, ⁵; ¹Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany; ²University of Applied Sciences Ansbach, Ansbach, Germany; ³Helmholtz Centre for Environmental Research GmbH - UFZ, Halle, Germany; ⁴Martin Luther University Halle-Wittenberg, Halle, Germany; ⁵Leipzig University, Leipzig, Germany; ⁶ProVIS – Centre for Chemical Microscopy, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany</td>
</tr>
</tbody>
</table>
TUESDAY, NOVEMBER 16, 9:00 – 10:30 AM EASTERN – Parallel 1

FP 329 Native mass spectrometry imaging of intact soluble and membrane protein complexes by nano-DESI; Oliver J. Hale1; James W. Hughes1; Emma K Sisley1; Helen J Cooper1; 1University of Birmingham, Birmingham, United Kingdom

Imaging MS: Pharmaceuticals, Metabolites, and Lipids (REMOTE POSTERS)

FP 336 Drug Imaging and Uptake Kinetics in Fasciola hepatica Parasite Samples using AP-SMALDI MSI; Carolin M Morawietz1; Simone Häberlein2; Alejandra Peter Ventura3; Georg Rennar4; Kerstin Strupat5; Martin Schlitzer3; Christoph G Grevelding2; Bernhard Spengler1; 1Institute of Inorganic and Analytical Chemistry, Justus Liebig University, Giessen, Germany; 2Institute of Parasitology, Justus Liebig University, Giessen, Germany; 3Institute for Pharmaceutical Chemistry, Philipps University, Marburg, Germany; 4Thermo Fisher Scientific (Bremen) GmbH, Bremen, Germany

FP 341 Combination of Mass Spectrometry Imaging and Enzyme Expression Reveals Disparity between Prostaglandin and Prostaglandin Synthase in situ Localizations; Kyle D. Duncan1; Xiaofei Sun2; Erin Baker3; Sudhansu K. Dey2; Ingela Lanekoff1; 1Uppsala University, Uppsala, Sweden; 2Cincinnati Children’s Hospital Medical Center, Cincinnati, OH; 3North Carolina State University, Raleigh, NC

Informatics: Algorithms and Statistical Advances (REMOTE POSTERS)

FP 349 Machine Learning Models for Detecting PFAS Ions Using Low Resolution Mass Spectrometry; Tsach Mackey1; Kunyu Zheng1; Michael J Dolan1; Kaveh Jorabchi1; 1Georgetown Univ., Washington, DC

FP 351 The R-package prolfqua for proteomics label-free quantification data analysis; Witold E Wolski1; Jonas Grossmann1, 2; Maria D’Errico1, 2; Christian Panse1, 2; Paolo Nanni1; 1Functional Genomics Center Zurich, ETH Zürich / University of Zurich, Zürich, Switzerland; 2Swiss Institute of Bioinformatics, Lousanne, Switzerland

Informatics: Multiomics Integration (REMOTE POSTERS)

FP 363 Profiling Of Protein Clusters Using Over Representation Analysis; Maria D’errico1; Witold Wolski1; 1Functional Genomics Center Zurich, ETH Zürich / University of Zurich, Zürich, Switzerland

Informatics: Peptide ID and Quantification (REMOTE POSTERS)

FP 365.5 Reducing missing values in phosphoproteomic and proteomic isobaric labelling data using fragment spectrum clustering; Firas Hamood1; Matthew The1; Florian Bayer1; Mathias Wilhelm1; Bernhard Kuster1; 1Technische Universität München, Munich, Germany

FP 366 Integrating Filtered Peak Lists into Protein Prospector’s Batch-Tag; Peter R Baker1; Robert J Chalkley2; 1UCSF, Rokietnica, Poland; 2UCSF, San Francisco, CA

FP 368 TIMS Viz for Mobility Offset Mass Aligned interrogation of complex samples; Philipp Strohmidel1; Sebastian Wehner1; Jens Decker1; Ignacio Jauregui1; Christopher Adams2; Tharan Sri Kumar2; Sven Brehmer1; 1Bruker Daltonics GmbH & Co. KG, Bremen, Germany; 2Bruker, Inc., San Jose, CA

FP 371 Detection of multiple modifications in mass spectra without any a priori; Albane Lysiak1; 2; Fertin Guillaume3; Géraldine Jean3; Dominique Tessier2, 4; 1Université de Nantes, Nantes, France; 2INRAE, UR BIA, Nantes, France; 3Université de Nantes, Nantes, France; 4INRAE, BIBS facility, Nantes, France

Informatics: Workflow and Data Management (REMOTE POSTERS)

FP 378 Solution towards a vendor-neutral secure data transfer process between LIMS/ELN and LC-MS/MS instruments for bioanalysis; Mark E Arnold1; Tim Blacker2; Gidion De Boer3; Scott Davies1; Blair James2; Neil J Loftus3; Burkhard Schaefer5; 1AAPS Data Storage Group, Arlington, VA; 2SCIEX, Concord, ON; 3Thermo Fisher Scientific - Digital Science Business Unit, Breda, Netherlands; 4Shimadzu MS/BU, Manchester, United Kingdom; 5BSSN Software, part of MilliporeSigma, Darmstadt, Germany

FP 379 Automated Approach to Optimize Differential Mobility Spectrometry Separations; Eva Duchoslav1; Leigh Bedford1; Yves Leblanc1; Bradley B. Schneider1; 1SCIEX, Concord, ON
FP 382 Needles in a Stack of Needles: Finding Significant Thermal Shifts in Thermal Proteome Profiling with Inflect Statistical Analysis and Bioinformatics; Neil Mccracken¹; Hao Liu²; Aruna Wijeratne³; Amber L Mosley¹;
¹Indiana University School Of Medicine, Indianapolis, IN; ²Rutgers University, Newark, NJ
Install the latest version of Zoom on your device. You need the latest version of Zoom installed on your laptop in order to utilize the self-select breakout room feature. You do **not** need a paid Zoom account, a free account is fine.

- **JOIN THE ZOOM MEETING** and enter the main room. Please share your video and audio to foster interactions!
- Breakout rooms will be labeled with poster code (e.g. FP 009 or FP 310). Presenters will be in their breakout room with their screen shared and ready to ‘present’ to you or answer questions.
- Using the table of contents below identify the breakout room you wish to visit.

- You may enter and exit breakout rooms as you wish. Note that each time you exit a breakout you will land back in the main meeting where you can choose a new breakout from the list.

Detail of poster titles and authors are provided on the next pages. If you wish to read an abstract, please consult the online planner or mobile app. Simply enter the poster code in the ‘Search’ to quickly locate corresponding abstract.

Table of Contents

Instrumentation: New Developments in Ionization and Sampling FP 402; FP 404; FP 406

Ion Mobility: FAIMS/DMS
................................... FP 438; FP 439; FP 441; FP 442

Ion Mobility: General .. FP 447

Ion Mobility: Structure ... FP 453

LC/MS: Sample Preparation FP 476; FP 477

Lipids: General .. FP 483; FP 485

Lipids: ID and Structural Analysis FP 487; FP 491; FP 496

Lipids: Targeted and Quantitative Analysis FP 505; FP 505.5

MALDI: Applications ... FP 512; FP 517

Metabolomics: Clinical Applications FP 521

Metabolomics: Targeted and Quantitative Analysis FP 540

Nucleic Acids and Oligonucleotides FP 568; FP 568.5; FP 578

Peptides: Targeted and Quantitative Analysis FP 600; FP 601

Phosphopeptides: Quantitative Analysis FP 615.5

Polymers ... FP 631

Protein Therapeutics: Structural Characterization FP 646

Proteins: Conformation Analysis and Structural Biology FP 657

Proteins: PTMs ..FP 658; FP 663

Proteomics: Clinical Applications FP 669

Proteomics: Quantitative ... FP 705

Proteomics: Top Down Analysis FP 719; FP 725; FP 726

Single Cell MS .. FP 734

Small Molecules: Quantitative Analysis FP 746; FP 747; FP 752; FP 758

Toxicology ... FP 768; FP 772
Instrumentation: New Developments in Ionization and Sampling (REMOTE POSTERS)

FP 402 Analysis of non-polar/non-volatile molecules by proton-transfer-reaction ionization time-of-flight mass spectrometry using supercritical carbon dioxide; Toshinobu Hondo\(^1\); Chihiro Ota\(^2\); Yumi Miyake\(^3\); Hiroshi Furutani\(^4\); Michisato Toyoda\(^2\); \(^1\)MS-Cheminformatics, Inabe-Gun, Japan; \(^2\)Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan; \(^3\)Graduate School of Science and Engineering, Kansai University, Suita, Japan; \(^4\)Center for Scientific Instrument Renovation and Manufacturing Support, Osaka University, Toyonaka, Japan

FP 404 DIP-MS: a probe for direct infusion of low-volume samples; Catia Marques\(^1\); Kyle D. Duncan\(^1\); Ingela Lanekoff\(^1\); \(^1\)Uppsala University, Uppsala, Sweden

FP 406 Instantaneous solvent prompted desorption electrospray ionization (ISPD-ESI)-MS with a porous thin-film device: An efficient method for rapid analysis of biofluids; Christina Bottaro\(^1\); Fereshteh Shahhoseini\(^2\); Ali Azizi\(^1\); \(^1\)Memorial University, St. John’s, NL

Ion Mobility: FAIMS/DMS (REMOTE POSTERS)

FP 438 Frequency and Waveform Dependence of the Compensation Voltage: Numerical Modeling of Cluster Systems in Differential Ion Mobility Spectrometry; Duygu Erdogdu\(^1\); Walter Wissdorf\(^2\); Hendrik Kersten\(^1\); Thorsten Benter\(^1\); \(^1\)University of Wuppertal, Wuppertal, Germany

FP 439 Quantitative separation analysis of therapeutic oligonucleotide isomer impurities by cyclic ion mobility (cIM) technique; Shogo Omuro\(^1\),\(^2\); Takao Yamaguchi\(^2\); Taiji Kawase\(^3\); Kenji Hirose\(^3\); Satoshi Obika\(^2\); \(^1\)Analytical Research Labs., Astellas Pharma Inc., Tsukuba, Japan; \(^2\)Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan; \(^3\)Nihon Waters K.K., Kitashinagawa, Japan

FP 441 The investigation of prototropic isomers of rivaroxaban in differential mobility spectrometry; Nour Mashmoushi\(^1\); Daniel R Juhasz\(^2\); Neville J A Coughlan\(^3\); Yves Leblanc\(^2\); Bradley B. Schneider\(^2\); Mircea Guna\(^2\); Blake Ziegler\(^1\); J. Larry Campbell\(^1\),\(^3\),\(^4\); W. Scott Hopkins\(^1\),\(^4\); \(^1\)University of Waterloo, Waterloo, ON; \(^2\)SCIEX, Concord, ON; \(^3\)Bedrock Scientific, Milton, ON; \(^4\)Watermine Innovation, Waterloo, ON

FP 442 First-Principles Modeling of Differential Ion Mobility – Aiming for Quantitative Prediction; Alexander Haack\(^1\); Justine Bissonnette\(^1\); Christian Ieritano\(^1\); W. Scott Hopkins\(^1\); \(^1\)University of Waterloo, Waterloo, ON

Ion Mobility: General (REMOTE POSTERS)

FP 447 Concepts for Elongated Spiral and Helical Ion Guides; Hamish Stewart\(^1\); Alexander Wagner\(^1\); Alexander Makarov\(^1\); \(^1\)Thermo Fisher Scientific, Bremen, Germany

Ion Mobility: Structure (REMOTE POSTERS)

FP 453 Controlling the Collision-Induced Unfolding/Dissociation Pathway of Hemoglobin through Charge State Manipulation in Ion Mobility Mass Spectrometry; Zhijun Zhu\(^1\); Xindi Tang\(^1\),\(^2\); Gongyu Li\(^3\),\(^4\); Lingjun Li\(^1\),\(^3\); \(^1\)Department of Chemistry, University of Wisconsin-Madison, Madison, WI; \(^2\)Department of Biochemistry, University of Wisconsin-Madison, Madison, WI; \(^3\)School of Pharmacy, University of Wisconsin-Madison, Madison, WI; \(^4\)Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin, China

LC/MS: Sample Preparation (REMOTE POSTERS)

FP 476 BCA-no-more: seamless, high throughput protein quantification directly on S-Trap plates; Aleisha Benjamin\(^1\); Darryl J.C. Pappin\(^2\); John Wilson\(^1\); \(^1\)ProtiFi, LLC, Farmingdale, NY; \(^2\)Cold Spring Harbor laboratory, Cold Spring Harbor, NY

FP 477 Fully Automated High Throughput Sample Preparation and Acquisition on an Exploris 240 for Aqueous Samples; Bernadette Vogler\(^1\); Günter Boehm\(^2\); Heinz Singer\(^3\); \(^1\)EAWAG, Dübendorf, Switzerland; \(^2\)CTC Analytics AG, Zwingen, Switzerland; \(^3\)EAWAG, Dübendorf, Switzerland
TUESDAY, NOVEMBER 16, 9:00 – 10:30 AM EASTERN – Parallel 2

Lipids: General (REMOTE POSTERS)

FP 483
Application of Hybrid Surface Technology for Improving Sensitivity and Peak Shape of Phosphorylated and Carboxylate Lipids; Giorgis Isaac¹; Robert S Plumb¹; Ian D Wilson³; ¹Waters Corporation, Milford, MA; ²Imperial college London, London, United Kingdom

FP 485
Fast and Accurate Lipid Profiling and Identification of Serum Samples by probe-electrospray Q-TOF MS using SimLipid Software; Venkata Kolli¹; Rupanjan Goswami¹, ²; Arun Apte²; Tasuku Murata³; Koretsugu Ogata³; Atsuhioko Toyama³; ¹PREMIER Biosoft, Indore, India; ²PREMIER Biosoft, San Francisco, California; ³Shimadzu Corporation, Kyoto, Japan

Lipids: ID and Structural Analysis (REMOTE POSTERS)

FP 487
A discovery platform for fatty acids using untargeted charge-switch derivatization UPLC-OzID-MS and automated large-scale data analysis; Jan Philipp Menzel¹, ², ³; Reuben S.E. Young¹, ²; Berwyck L.J. Poad¹, ²; Stephen J Blanksby¹, ²; ¹School of Chemistry and Physics, Queensland University of Technology, Brisbane, Australia; ²Centre for Materials Science, Queensland University of Technology, Brisbane, Australia; ³Centre for Data Science, Queensland University of Technology, Brisbane, Australia

FP 491
Quantitative differentiation of glycerolipid sn-positional isomers with tandem mass spectrometry; Johan Lilija¹; Kyle D. Duncan¹; Ingela Laneckoff¹; ¹Uppsala University, Uppsala, Sweden

FP 496
IRMPD action spectroscopy of [PC (4:0/4:0)+H/Na/K]+ and corresponding CID fragment ions; Simon Becher¹; Giel Berden²; Jos Oomens²; Sven Heiles²; Bernhard Spengler³; ¹Justus-Liebig-University Gießen, Gießen, Germany; ²FELIX Laboratory, Radboud University, Nijmegen, Netherlands; ³Justus-Liebig-University Gießen, Gießen, Germany

Lipids: Targeted and Quantitative Analysis (REMOTE POSTERS)

FP 505
Development of an analytical method for human blood triglycerides using triple quadrupole mass spectrometer; Yutaka Umakoshi¹; Toinon Doriane¹; Masaki Yamada¹; ¹Shimadzu Corp., Kyoto, Japan

FP 505.5
Comparison of untargeted LC-MS and targeted MRM-LC-MS-based lipidomics analysis; Deema O. Qasrawi¹; Evgeny Petrochentko¹, ²; Christoph H. Borchers³; ¹Segal Cancer Proteomics Centre, McGill University, Montreal, QC; ²Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow, Russia; ³McGill University, Montreal, QC

MALDI: Applications (REMOTE POSTERS)

FP 512
The potential of intact cell mass spectrometry as a monitoring tool for fermentation processes; Cristian Zanetti¹; Christopher Stephan²; Alexandra Foettinger-Vacha³; Martina Marchetti-deschmann¹; ¹TU Wien, Vienna, Austria; ²Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria

FP 517
Alkaline Embolization In Vivo: Multi-Modal Feasibility Study using Computed Tomography, Fluoroscopy, and Mass Spectrometry Imaging; Emily A Thompson¹; Danielle L. Stolley³; Megan Jacobsen¹; Marina Yu³; Brett Pogostin³; Erin H. Seeley³; A. Colleen Crouch¹, ²; Shubhneet Warar³; Kevin McHugh³; Rick Layman³; Erik N. K. Cressman¹; ¹MD Anderson Cancer Center, Houston, TX; ²Rice University, Houston, TX; ³The University of Texas at Austin, Austin, TX; ⁴The University of Tennessee at Knoxville, Knoxville, TN; ⁵Baylor University, Waco, TX

Metabolomics: Clinical Applications (REMOTE POSTERS)

FP 521
Characterising the impact of delivery mode on the biochemical signatures of neonatal brain cortex in mice using LC-MS/MS; Neil J Loftus¹; Alan Barnes¹; Maria Rodriguez Aburto²; Carmen Tessier²; John Cryan²; Jonathan Swann³; ¹Shimadzu MS/BU, Manchester, United Kingdom; ²APC Microbiome Ireland, University College Cork, College Road, Cork, Ireland; ³School of Human Development and Health, Faculty of Medicine University of Southampton, Southampton, United Kingdom
Metabolomics: Targeted and Quantitative Analysis (REMOTE POSTERS)

FP 540
automRm: An R package for fully automatic pre-processing of LC-QQQ data powered by machine learning; Joerg M Buescher¹; Daniel Eilertz²; Michael Mitterer²; ¹Max Planck Institute of Immunbio. and Epigenetics, Freiburg, Germany

Nucleic Acids and Oligonucleotides (REMOTE POSTERS)

FP 568
Rapid Analysis of mRNA 5'-Capping with High-Resolution LC-MS; Brian Liau; Agilent Technologies, Singapore, Singapore

FP 568.5
Probing the intramolecular folding of DNA i-motifs with native ion mobility mass spectrometry, charge- and collision-induced unfolding; Sanae Benabou Zdaou¹; Valérie Gabelica¹,²,³; ¹University of Bordeaux, Bordeaux, France; ²Laboratoire Acides Nucleiques: Régulations Naturelle et Artificielle, Bordeaux, France; ³Institut national de la santé et de la recherche médicale (Inserm), Bordeaux, France

FP 578
Analysis of Oligonucleotide Impurities on a UHPLC-TOF MS System with a Modified Surface Technology; Catalin E Doneanu¹; Christopher Knowles²; Jonathan Fox²; Emma Harry²; Ying Qing Yu³; Joseph Fredette³; Weibin Chen³; ¹Waters Corporation, Milford, MA; ²Waters Corporation, Wilmslow, United Kingdom; ³Waters Corporation, Milford, Massachusetts

Peptides: Targeted and Quantitative Analysis (REMOTE POSTERS)

FP 600
A SISCAPA-based approach for detection of SARS-CoV-2 viral antigens from clinical samples; Kiran Kumar Mangalaparthi¹; Sandip Chavan¹; Anil K. Madugundu¹,²,³,⁴; Rohit Budhraja¹; Santosh Renuse¹; Patrick M. Vanderboom¹; Anthony Maus¹; Jennifer Kemp¹; Benjamin R Kipp¹; Stefan K. Grebe¹; Ravinder J. Singh¹; Akhilesh Pandey¹,²; ¹Mayo Clinic, Rochester, MN; ²Institute of Bioinformatics, Bengaluru-560065, India; ³Manipal Academy of Higher Education, Manipal, India; ⁴National Institute of Mental Health and Neurosciences, Bengaluru-560065, India

FP 601
Quantitation of isoAsp Amyloid beta in human AD patients and genetically modified mouse model by a combination of MS approaches; Maria I. Indeykina¹; Polina Strelnikova¹,²; Anna E. Bugrova¹; Alexander Brzhozovskiy²; Eugene Barykin³; Maria S. Gavrish³; Alexey A. Babaev³; Natalia V. Zakharova¹; Alexey S. Kononikhin³; Alexander A. Makarov³; Evgeny Nikolaev³; ¹Emanuel Institute of Biochemical Physics, Russian Academy of Science, Moscow, Russia; ²Moscow institute of physics and technology, Dolgoprudny, Russia; ³Skolkovo Institute of Science and Technology, Moscow, Russian Federation; ⁴Engelhardt Institute of Molecular Biology, Moscow, Russia; ⁵Lobachevsky State University of Nizhni Novgorod, Institute of Neuroscience, Nizhny Novgorod, Russia

Phosphopeptides: Quantitative Analysis (REMOTE POSTERS)

FP 615.5
LiDIA-PASEF: A framework using experimental libraries for optimal acquisition of (phospho)proteomes by diaPASEF; Patricia Skowronek¹; Marvin Thielert¹; Fynn M. Hansen¹; Eugenia Voytik¹; Özge Karayel¹; Maria C. Tanzer¹; Florian Meier¹,²; Andreas-David Brunner¹; Matthias Mann¹,²,³; ¹MPI, Planegg, Germany; ²Jena University Hospital, Jena, Germany; ³NNF CENTER FOR PROTEIN RESEARCH, Copenhagen, Denmark

Polymers (REMOTE POSTERS)

FP 631
Reactive Desorption Electrospray Ionization (reactive-DESI) Mass Spectrometry to Determine a degradability scale of Poly(Lactic-co-Glycolic Acid) Chains; Thierry Nicolas Jean Fouquet¹,²; Jean-Arthur Amalian³; Nathan Aniel³; Isaura Carvin-Sergent³; Sébastien Issà³; Salomé Poyer³; Delphine Crozet³; Pierre Giusti⁴,⁵; Didier Gigmes³; Thomas Tramaille³; Laurence Charles³; ¹Bausch + Lomb, Rochester, NY; ²Jean-Arthur Amalian; ³International Joint Laboratory – IC2MC: Complex Matrices Molecular Characterization, Harfleur, France

Protein Therapeutics: Structural Characterization (REMOTE POSTERS)

FP 646
Characterization of Forced Photo-Stress Induced Modifications by Mass Spectrometry; Joanne Cotton¹; Luke K Brewer¹; Fatemeh Tousi¹; Martha Stapels¹; Karen Lee¹; "Sanofi, Framingham, MA"
Proteins: Conformation Analysis and Structural Biology (REMOTE POSTERS)

FP 657 Structural mass spectrometry approaches to decipher interactions within the ~380 kDa RUVBL1/RUVBL2/DPCD complex; Marie Ley1, 2; Evolène Deslignière1, 3; Paulo Espirito Santo4; Steve Hessmann1, 2; Cédric Schelcher1; Marie-Eve Chagot1; Ana Catarina Paiva4; Bruno Charpentier5; Tiago Bandeiras4; Xavier Manival5; Raphaël Dos Santos Morais5; Sarah Cianférani1, 2; 1Laboratoire de Spectrométrie de masse BioOrganique (LSMBO), IPHC, UMR 7178, Université de Strasbourg, CNRS, 25 rue Becquerel, 67087 Strasbourg, France; 2Infrastructure Nationale de Protéomique ProFI – FR2048, Strasbourg, France; 3Laboratoire de Spectrométrie de masse BioOrganique (LSMBO), IPHC, CNRS, UMR 7178, Université de Strasbourg, Strasbourg, France; 4Instituto de Tecnologia Química e Biológica António Xavier, Universidade de Nova de Lisboa, Oeiras, Portugal; 5CNRS, IMoPA, Université de Lorraine, Nancy, France

Proteins: PTMs (REMOTE POSTERS)

FP 658 Liquid chromatography setup-dependent artefactual methionine oxidation of peptides: the importance of an adapted quality control process; France Baumans1; Emeline Hanozin1; Dominique Baiwir2; Corentin Decroo3; Ruddy Wattiez3; Edwin De Pauw1; Gauthier Eppe1; Gabriel Mazzucchelli1; 1Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Liege, Belgium; 2GIGA Proteomics Facility, University of Liege, Belgium; 3Proteomics and Microbiology Laboratory, University of Mons, Belgium

FP 663 A novel spectral annotation workflow that scores MS2 features unique to ADP-ribosylated peptides reveals the complexity in their dissociative properties; Shiori Kuraoka1; Waqas Nasir2; Bernard Delanghe2; Masanori Aikawa1, 3, 4; Sasha A. Singh1; 1Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham Women’s Hospital, Harvard Medical School, Boston, MA; 2Thermo Fisher Scientific (Bremen) GmbH, Bremen, Germany; 3Center for Excellence in Vascular Biology, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA; 4Channing Division of Network Medicine, Department of Medicine, Brigham Women’s Hospital, Harvard Medical School, Boston, MA

Proteomics: Clinical Applications (REMOTE POSTERS)

FP 669 Semi-quantitative proteomic analysis on cancer stem cell following synergistic treatment with curcumin and cisplatin; Mohd Nazri Ismail1; Nazilah Abdul Satar2; Badrul Hisham Yahaya2; 1ANALYTICAL BIOCHEMISTRY RESEARCH CENTRE, Bayan Lepas, Malaysia; 2Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia

Proteomics: Quantitative (REMOTE POSTERS)

FP 705 Label free DIA and DDA nano-LC/MS/MS improved quantitative profiling of redox stress mediated proteomic changes in mouse dendritic cells; Cristina C Clement1; Rajesh Kumar Soni2; 1Weill Cornell Medicine, New York, NY; 2Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY

Proteomics: Top Down Analysis (REMOTE POSTERS)

FP 719 Quantitative top-down proteomics by isobaric labeling with thiol-directed tandem mass tags; Konrad Winkels1; Tomas Koudelka1; Andreas Tholey1; 1Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany

FP 725 Top-down Analysis of Multi-Phosphorylated Proteins using 193 nm Ultraviolet Photodissociation Mass Spectrometry; Edwin Escobar1; Mukesh Kumar Venkat Ramani1; Yan Zhang1; Jennifer S Brodbelt1; 1University of Texas at Austin, Austin, TX

FP 726 In situ top-down identification and native ambient mass spectrometry imaging of metal-bound and ligand-bound proteins in rat brain; Emma K Sisley1; Oliver J Hale1; Iain B Styles1; Helen J Cooper1; 1University of Birmingham, Birmingham, United Kingdom
Single Cell MS (REMOTE POSTERS)

| FP 734 | Functional Single-cell Proteomic Profiling (FUNpro) Links the Phenotype of Abnormal DNA Damage Response to its Underlying scProteome; Pin-Rui Su\(^1\)\(^2\); Li You\(^1\); Cecile Beerens\(^1\); Karel Bezarostoi\(^1\); Jeroen Demmers\(^1\); Martin Pabst\(^3\); Roland Kanaar\(^1\); Cheng-Chih Hsu\(^2\); Miao-Ping Chien\(^1\); \(^1\)Erasmus MC, Rotterdam, Netherlands; \(^2\)National Taiwan University, Taipei, Taiwan; \(^3\)Delft University of Technology, Delft, Netherlands |

Small Molecules: Quantitative Analysis (REMOTE POSTERS)

FP 746	Quantitation of NDMA, NMBA, NDEA, NEIPA, NDPA, NDIPA, NMPA and NDBA in 12 different solvents by LC-MS/MS system; Shailendra Rane\(^1\); Deepti Bhandarkar\(^1\); Devika Tupe\(^1\); Purushottam Sutar\(^1\); Ashutosh Shelar\(^1\); Bhaumik Trivedi\(^1\); Navin Devadiga\(^1\); Mohit Sharma\(^1\); Nitin Shukla\(^1\); Jitendra Kelkar\(^1\); Pratap Rasam\(^1\); \(^1\)Shimadzu Analytical (India) Pvt. Ltd, Mumbai, India
FP 747	Simultaneous low-level quantitation of four impurities in Clozapine API using Triple Quadrupole LC-MS/MS; Prasanth Joseph\(^1\); Sivakumar S.\(^1\); Saikat Banerjee\(^1\); Kannan Balakrishnan\(^1\); \(^1\)Agilent Technologies, Bangalore, India
FP 752	High-Throughput Screening for Antagonists of a Lipid Metabolizing Enzyme on a Fully Automated acoustic ejection mass spectrometry platform; Xiujuan Wen\(^1\); Peter Nizner\(^1\); Kiersten Tovar\(^1\); Steven Stout\(^1\); Chang Liu\(^2\); Stephen Previs\(^1\); Elizabeth Mohammed\(^1\); Steven Cifelli\(^1\); Christopher Novotny\(^1\); Salman Jabri\(^1\); Zhao Ren\(^1\); Markus Koglin\(^1\); Mary Jo Wildey\(^1\); Kenneth Ellsworth\(^1\); David Mclaren\(^1\); \(^1\)Merck & Co., Kenilworth, NJ; \(^2\)SCIEX, Concord, ON
FP 758	Comparison of semi-quantification methods for non-targeted screening of emerging contaminants with LC/ESI/HRMS; Louise M E Malm\(^1\); Anneli Kruve\(^1\); \(^1\)Stockholm University, Stockholm, Sweden

Toxicology (REMOTE POSTERS)

| FP 768 | GC-MS/MS Analyses of Biosamples to Support Efficacy Evaluation of Novel Neuroprotectants Against the Chemical Warfare Nerve Agent Sarin; Jeffrey M McGuire\(^1\); Lucille A Lumley\(^2\); Christopher E Whalley\(^1\); \(^1\)U.S. Army DEVCOM Chemical Biological Center, Aberdeen Proving Ground, MD; \(^2\)U.S. Army MRICD, Aberdeen Proving Ground, MD |
| FP 772 | Exploring Potential Differences in Developmental Toxicology of Per- and Polyfluoroalkyl Substances (PFAS) Through Targeted Metabolomics; Denise K. Macmillan\(^1\); Nicola Evans\(^2\); L. Earl Gray\(^2\); Christy S. Lambright\(^2\); Justin M. Conley\(^2\); \(^1\)USEPA/ORD/CCTE, Durham, NC; \(^2\)USEPA/ORD/CPHEA, Durham, NC |
Install the latest version of Zoom on your device. You need the latest version of Zoom installed on your laptop in order to utilize the self-select breakout room feature. You do not need a paid Zoom account, a free account is fine.

- **JOIN THE ZOOM MEETING** and enter the main room. Please share your video and audio to foster interactions!
- Breakout rooms will be labeled with poster code (e.g. FP 009 or FP 310). Presenters will be in their breakout room with their screen shared and ready to ‘present’ to you or answer questions.
- Using the table of contents below identify the breakout room you wish to visit.

- You may enter and exit breakout rooms as you wish. Note that each time you exit a breakout you will land back in the main meeting where you can choose a new breakout from the list.

Detail of poster titles and authors are provided on the next pages. If you wish to read an abstract, please consult the online planner or mobile app. Simply enter the poster code in the “Search” to quickly locate corresponding abstract.

Table of Contents

- Ambient Ionization: Fundamentals and Instrumentation FP 015
- Antibodies & Antibody Drug Conjugates FP 023; FP 030; FP 031
- Artificial Intelligence in MS Instrumentation and Applications FP 044; FP 046
- Biomarkers: Discovery FP 053.5; FP 061
- Biomolecular Structure Analysis: Chemical Crosslinking and Covalent Labeling FP 080
- Cannabis .. FP 082.5
- Carbohydrates .. FP 084; FP 088
- Clinical Analysis FP 092; FP 099
- Data-Dependent Acquisition FP 104; FP 106.5
- Disease Biomarkers FP 116
- Drug and Metabolite Analysis FP 142
- Environmental: Exposomics FP 151
- Environmental: General FP 167.5
- Food Safety & Chemistry: Foodomics, Allergens, Bacteria, Foods, and Supplements FP 183; FP 192
- Forensics ... FP 220; FP 225
- Fundamentals: Ion Activation/Dissociation FP 230
- Fundamentals: Ionization FP 239.5
- Fundamentals: Metal Ion Cationization, Metal-Ligand Interactions, Catalysis FP 243
- Fundamentals: Molecular Modeling/Quantum Mechanical Calculations FP 244
- Fundamentals: Native MS FP 245
- Glycoproteins FP 264; FP 268; FP 270; FP 271; FP 277
- H/D Exchange: Protein Structure/Function FP 282
- Homeland Security FP 290
- Imaging MS: Disease Markers FP 298
- Imaging MS: Instrumentation FP 309
- Imaging MS: Method Development FP 325
- Imaging MS: Pharmaceuticals, Metabolites, and Lipids FP 337
<table>
<thead>
<tr>
<th>Theme</th>
<th>Poster Number</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient Ionization: Fundamentals and Instrumentation (REMOTE POSTERS)</td>
<td>FP 015</td>
<td>The use of Desorption ElectroSpray ionisation with a novel heated transfer line for the analysis of lubricated surfaces; Eleanor Riches; Emmanuelle Claude; Caitlyn Da Costa; Jeff Goshawk; Gordon Jones; 1Waters Corporation, Wilmslow, United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Antibodies & Antibody Drug Conjugates (REMOTE POSTERS)</td>
<td>FP 023</td>
<td>At-line monoclonal antibody analysis using affinity-chromatography with mass spectrometry detection and fully compliant data acquisition and processing; Sara Carillo; Craig Jakes; Florian Fuessl; Jennifer Sutton; Julia Kraegenbring; Catharina Crone; Kai Scheffler; Jonathan Bones; 1National Institute for Bioprocessing Research and Training (NIBRT), blackrock, Ireland; 2Thermo Fisher Scientific, San Jose, CA; 3Thermo Fisher Scientific, Bremen, Germany; 4Thermo Fisher Scientific, Germering, Germany; 5University College Dublin, Dublin, Ireland</td>
<td></td>
</tr>
<tr>
<td>FP 030</td>
<td></td>
<td>A pepsin digestion strategy designed for the quantification of LAGA mutated mouse IgG2a in mice using immunoaffinity LC/MS/MS; Linlin Dong; Susan Chen; Konstantin Piatkov; Mark G. Qian; Dong Wei; 1Takeda Pharmaceuticals International Co., Cambridge, MA</td>
<td></td>
</tr>
<tr>
<td>Antibodies & Antibody Drug Conjugates (REMOTE POSTERS)</td>
<td>FP 031</td>
<td>MS characterization of Radioligand Therapy (RLT) molecules: a Journey from standard LC-MS to (LC-) ICP-MS; Patrick Schindler; Heloise Hensinger; Rahel Walliman; Thierry Besson; Nathalie Lachat Vindret; Meike Scharenberg; Daniela Pintassilgo Miranda; Katie Russo; Tony D’alesio; Rainer Kneuer; 1Novartis Research Institute, Basel, Switzerland; 2Novartis Research Institute, Cambridge, MA</td>
<td></td>
</tr>
<tr>
<td>Artificial Intelligence in MS Instrumentation and Applications (REMOTE POSTERS)</td>
<td>FP 044</td>
<td>Machine Learning to Reduce Manual Correction of LC-MS Peak Integrations; Lyle Burton; Gillian Brooks; 1SCIEX, Concord, ON</td>
<td></td>
</tr>
<tr>
<td>FP 046</td>
<td></td>
<td>Untargeted Classification of Breast Cancer in DESI-MS; Rachel L Theriault; Emma E Ritcey; Randy E Ellis; 1Queen’s University, Kingston, ON</td>
<td></td>
</tr>
<tr>
<td>Biomarkers: Discovery (REMOTE POSTERS)</td>
<td>FP 053.5</td>
<td>Processing and analysis of PTR-TOF mass spectrometry data for biomarker discovery in exhaled breath; Camille Roquencourt; Etienne Thevenot; Stanislas Grassin-Delyle; 1CEA, LIST, Laboratoire Sciences des Données et de la Décision, Gif-sur-Yvette, France; 2Hôpital Foch, Exhalomics, Département des maladies des voies respiratoires, Suresnes, France; 3Université Paris-Saclay, UVSQ, INSERM, Infection et inflammation, Montigny le Bretonneux, France</td>
<td></td>
</tr>
<tr>
<td>FP 061</td>
<td></td>
<td>Detection of eradication of infection markers in an experimental model of septic arthritis in horses using tandem mass spectrometry; Roman V Kozy; Jose L Bracamonte; Paulos Chumala; Elemir Simko; George S. Katselis; 1University of Saskatchewan, Saskatoon, SK</td>
<td></td>
</tr>
<tr>
<td>Biomolecular Structure Analysis: Chemical Crosslinking and Covalent Labeling (REMOTE POSTERS)</td>
<td>FP 080</td>
<td>Isolation of lignification peroxidases by a modified proximity-dependent biotinylation using modified monolignols and click-chemistry; Ranin Dabbousy; Sonia Midali; Manal Ridany; Stéphanie Flament; Youssef Bakkour; Christian Rolando; 1University of Lille, Lille, France; 2Lebanese University, Tripoli, Lebanon</td>
<td></td>
</tr>
<tr>
<td>Cannabis (REMOTE POSTERS)</td>
<td>FP 082.5</td>
<td>Developing Testing Standards to ensure safety for Heated Inhalant based consumer products; Robert O’Brien; Seamus Riordan-Short; Ryan Hayward; Sarah Lyons; 1Supra Research and Development, Kelowna, BC; 2The University of British Columbia Okanagan, Department of Biology, Kelowna, BC; 3Thompson Rivers University, Kamloops, BC</td>
<td></td>
</tr>
<tr>
<td>Carbohydrates (REMOTE POSTERS)</td>
<td>FP 084</td>
<td>Elucidating the complexities of the human milk glycome with advances in ion chromatography-mass spectrometry (IC-MS); Tian Tian; Neil G Rumachik; Yan Liu; Christopher A Pohl; 1Thermo Fisher Scientific, Sunnyvale, CA</td>
<td></td>
</tr>
</tbody>
</table>
FP 088 Sequencing of Carbohydrates Oligosaccharides using Tandem Trapped Ion Mobility Spectrometry–Mass Spectrometry (tTIMS/MS); Jusung Lee1; Christian Bleiholder1; 1Florida State University, Tallahassee, FL

Clinical Analysis (REMOTE POSTERS)

FP 092 Fast Profiling of 39 Bile Acids in Plasma, Urine and Feces, by Automated Extraction and LC/MS/MS; Aurore Jaffuel1; Kunisawa Akihiro1; Watanabe Jun1; SHIMADZU Corporation, MS Business Unit, Kyoto, Japan., Kyoto, Japan

FP 099 Optimization of embedding human lung for bulk and spatial metabolomics, lipomics, and proteomics; Jessica K Lukowski1; Heather Olson1; Juan Wang1; Jennifer E Kyle1; Heidie Huyck2; Matthew Mcgraw2; Cory Poole2; Lisa Rogers2; Gloria Pryhuber2; Theodore Alexandrov3; James Carson4; Geremy Clair1; Joshua N Adkins1; Christopher R Anderton1; 1Pacific Northwest National Laboratory, Richland, WA; 2University of Rochester Medical Center, Rochester, NY; 3European Molecular Biology Laboratory, Heidelberg, Germany; 4Texas Advanced Computer Center, University of Texas at Austin, Austin, Texas

Data-Dependent Acquisition (REMOTE POSTERS)

FP 104 Identification of Degradation Products Leached from Dental Composite Materials in Simulated Oral Environment using LC-MS/MS; Chien-chia Chen1; karabi Mondal1; Philippe Vervliet2; Adrian Covaci3; Evan P. O'brien1; James L. Drummond1; Karl J. Rockne1; Luke Hanley1; 1University of Illinois at Chicago, Chicago, IL; 2University of Antwerp, Antwerp, Belgium

Data-Independent Acquisition (REMOTE POSTERS)

FP 106.5 Label-free dia-PASEF as an alternative to TMT quantitation for thermal proteome profiling / cellular thermal shift assay; Johan Lengqvist1; Renata Blatnik2; Veerle Paternoster1; Romano Hebelet2; Alexey Chernobrovkin1; 1Pelago Bioscience, Solna, Sweden; 2Bruker Daltonik GmbH, Bremen, Germany

Disease Biomarkers (REMOTE POSTERS)

FP 116 Detection of Salivary Biomarkers of 2019 Novel Coronavirus Using Mass Spectrometry-based Proteomics; Lina M. Marin1; Paulos Chumala1; Stephen Sanchez2; Lucas Julseth1; Erika Penz3; Robert Skomro1; Walter L. Siqueira1; George S. Katselis1; 1University of Saskatchewan, Saskatoon, SK

Drug and Metabolite Analysis (REMOTE POSTERS)

FP 142 Spatial metabolomics analysis of treatment efficacy in Chagas disease; Zongyuan Liu1; Rebecca Ulrich1; April Kendricks2; Ana Carolina de Araujo Leao3; Maria Elena Bottazzi3; Peter Jay Hotez1; David J. Tewardy4; Kathryn Marie Jones3; Laura-Isobel Mccall1; 1University of Oklahoma, Norman, OK; 2Southern Star Medical Research Institute, Houston, TX; 3baylor college of medicine, houston, TX; 4University of Texas MD Anderson Cancer Center, Houston, TX

Environmental: Exposomics (REMOTE POSTERS)

FP 151 Molecular Characterization of Fecal Spots in Relation to Bed Bug Sex, Life Stage and Level of Infestation; William Keith Ray1; Morgan M Wilson1; Dini M Miller1; Richard F. Helm1; 1Virginia Tech, Blacksburg, VA

Environmental: General (REMOTE POSTERS)

FP 167.5 Fast ANSI C Algorithm for Analysis of PFAS by 21 T FT-ICR MS; Greg T. Blakney1; Amy M McKenna1, 2; Robert B. Young3; Jens Blotevogel2, 4; 1National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL; 2Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado; 3Chemical Analysis and Instrumentation Laboratory, New Mexico State University, Las Cruces, NM; 4Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO

Food Safety & Chemistry: Foodomics, Allergens, Bacteria, Foods, and Supplements (REMOTE POSTERS)

FP 183 LC-MS/MS quantitation of wheat allergen alpha-amylase/trypsin inhibitor CM3 and glutathione in sourdough bread; Savanna Won1; Michael Gänzle1; Jonathan Curtis1; 1University of Alberta, Edmonton, AB

FP 192 Glycoproteomic study of Saccharomyces cerevisiae yeast cell wall mannoproteins reveals a dynamic molecular change depending on culture strategy and conditions; Marie Yannine1, 2; Fabrice Bray1; Antoine
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forensics (REMOTE POSTERS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP 220</td>
<td>Rapid qualitative screening and quantitative analysis using probe ESI unit and UHPLC system combined with quadrupole time-of-flight mass spectrometer; Tasuku Murata¹; Eishi Imoto²; Shimadzu Corp., Kyoto, Japan; Shimadzu corp., Kyoto, Japan</td>
<td>¹Shimadzu Corp., Kyoto, Japan; ²Shimadzu corp., Kyoto, Japan</td>
</tr>
<tr>
<td>FP 225</td>
<td>A comparative assessment of NIST mass spectral library search methods for identifying unknown drugs; Edward P Erisman¹; Arun S Moorthy¹</td>
<td>¹NIST, Gaithersburg, MD</td>
</tr>
<tr>
<td>Fundamentals: Ion Activation/Dissociation (REMOTE POSTERS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP 230</td>
<td>Unexpected "camel back" shape of energy resolved breakdown curves of lipo-glutamate: direct and consecutive channels evidenced by cyclic ion mobility; Amandine Hueber¹,²; Yves Gimbert¹,³; David Ropartz²; Martin Green³; Jakob Ujma⁴; Keith Richardson⁵; Valérie Steiner⁵; Geoffrey Langevin⁷; Mathieu Fanuel²; Jean-François Martin²; Hélène Rogniaux²; Nicolas Cenac²; Justine Bertand-Michel⁵; Jean-Claude Tabet⁴; MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France; IRSD, Toulouse, France; Département de chimie moléculaire, Grenoble, France; Sorbonne Université, Faculté des sciences et de l'ingénierie, Institut Parisien de Chimie Moléculaire (IPCM), Paris, France; INRAE UR1268 BIA – Plate-forme BIBS, La Géraudière, France; Waters, Wilmslow, United Kingdom; IBMM: Institut des Biomolécules Max Mousseron, Montpellier, France</td>
<td>¹Sorbonne Université, Faculté des sciences et de l'ingénierie, Institut Parisien de Chimie Moléculaire (IPCM), Paris, France; ²Département de Chimie Moléculaire, UMR CNRS 5250, Université de Grenoble Alpes, Grenoble, France; ³Génomique métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France; ⁴Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette, France; ⁵NIDA IRP, NIH Structural Biology Unit Integrative Neuroscience Branch, Baltimore, MD; ⁶The Johns Hopkins University School of Medicine, Pharmacology and Molecular Sciences, Baltimore, MD</td>
</tr>
<tr>
<td>Fundamentals: Ionization (REMOTE POSTERS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP 239.5</td>
<td>Re-introduction of chemistry assisted by quantum computationally to bioinformatics software for a better low energy CID spectra interpretation in metabolomic; Jean-Claude Tabet¹,²; Yves Gimbert¹,³; Annelaure Damont²; Ekaterina Darii³; David Touboul³; François Fenaille³; Amina S. Woods⁶,⁷; Sorbonne Université, Faculté des sciences et de l’ingénierie, Institut Parisien de Chimie Moléculaire (IPCM), Paris, France; Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Paris, France; Département de Chimie Moléculaire, UMR CNRS 5250, Université de Grenoble Alpes, Grenoble, France</td>
<td>¹Sorbonne Université, Faculté des sciences et de l’ingénierie, Institut Parisien de Chimie Moléculaire (IPCM), Paris, France; ²Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Paris, France; ³Département de Chimie Moléculaire, UMR CNRS 5250, Université de Grenoble Alpes, Grenoble, France; ⁴Génomique métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France; ⁵Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette, France; ⁶NIDA IRP, NIH Structural Biology Unit Integrative Neuroscience Branch, Baltimore, MD; ⁷The Johns Hopkins University School of Medicine, Pharmacology and Molecular Sciences, Baltimore, MD</td>
</tr>
<tr>
<td>Fundamentals: Metal Ion Cationization, Metal-Ligand Interactions, Catalysis (REMOTE POSTERS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP 243</td>
<td>Informatics for Finding Novel Metal-Binding Molecules; Allegra Aron¹; Mingxun Wang¹; Pieter C. Dorrestein¹</td>
<td>¹UCSD, La Jolla, CA</td>
</tr>
<tr>
<td>Fundamentals: Molecular Modeling/Quantum Mechanical Calculations (REMOTE POSTERS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP 244</td>
<td>Understanding the role of the substrate on laser desorption/ionization and primary ion beam analysis of lipids through molecular modeling; Michael J Taylor¹; William R. Kew¹; Amity Andersen¹; Christopher R Anderton¹</td>
<td>¹Pacific Northwest National Laboratory, Richland, WA</td>
</tr>
<tr>
<td>Fundamentals: Native MS (REMOTE POSTERS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP 245</td>
<td>Investigating correlations between physicochemical properties of proteins and native mass spectral features using capillary vibrating sharp-edge spray ionization; Samira Hajian Foroushan¹; Daud Sharif¹; Kushani Attanayake¹; Peng Li¹; Stephen J. Valentine¹; West Virginia University, Morgantown, WV</td>
<td>¹West Virginia University, Morgantown, WV</td>
</tr>
</tbody>
</table>
Glycoproteins (REMOTE POSTERS)

FP 264 DeGlyPHER: an ultrasensitive method for analysis of viral spike N-glycoforms; Sabyasachi Baboo; Jolene K. Diedrich; Salvador Martinez-Bartolome; Xiaoning Wang; Torben Schiffner; Bettina Groschel; William R. Schief; James C. Paulson; John R. Yates, III; 1The Scripps Research Institute, La Jolla, CA; 2IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA; 3The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA

FP 268 Neutral pH Reversed Phase LC-MS Methodology For the Recovery and Characterization of Highly Acidic Peptides of Enbrel and Beta Casein; Samantha Ippoliti; Dale Cooper-Shepherd; Ying Qing Yu; Weibin Chen; James I. Langridge; 1Waters Corporation, Milford, Massachusetts; 2Waters Corporation, Wilmslow, United Kingdom

FP 270 Understanding the Role of Glycosylation on SARS-CoV-2 Spike Receptor Binding Domain (RBD) by Intact Protein and Native Mass Spectrometry; Jesse W Wilson; Yen-Chen Liao; Aivett Bilbao; Dusan Velickovic; Roza Wojcik; Marta Passamonti; Rui Zhao; Andrea Gargano; Vincent R Gerbasi; Lilijana Pasa-Tolic; Scott Baker; Mowei Zhou; 1Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington; 2Pacific Northwest National Laboratory, Richland, WA; 3Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, Netherlands

FP 271 Development of trapped ion mobility-mass spectrometry methods and collision cross section database for improved characterization of intact glycopeptides; Matthew Glover; Abby J. Chiang; Shao Huan Samuel Weng; Raghothama Chaerkady; Lisa H. Cazares; Sonja Hess; 1AstraZeneca, Gaithersburg, MD

FP 277 Rapid profiling mAbs with Recombinant Lectins using Ion Mobility Spectrometry; Henry Benner; Jared Clark; Ananya Dubey Kelsoe; Subhra Pradhan; Maria Tejero; 1IonDX Inc., Monterey, CA; 2GlycoSelect, Ltd., Dublin, Ireland

H/D Exchange: Protein Structure/Function (REMOTE POSTERS)

FP 282 HDX-MS based epitope mapping of antibody targeting the cysteine-rich region of IGF1R enabled by electrochemical reduction; Martin Eysberg; 1Joey Sheff; John Kelly; Jennifer Hill; Kristin Kemmerich; Kasper Rand; Gerard Comamala; Danica Stanimirovic; 1Antec Scientific, LLC, Boston, MA; 2Human Health Therapeutics, NRC Canada, Ottawa, ON; 3University of Copenhagen, Copenhagen, Denmark

Homeland Security (REMOTE POSTERS)

FP 290 Portable Mass Spectrometer for Bioaerosol Detection; Vadym Berkout; Wayne Bryden; Noel Bryden; Charles Call; Emily Caton; Max Cetta; Dapeng Chen; Ben Clingan; Stuart Collymore; Tim Cornish; Alese Devlin; Scott Ecelberger; Caroline Haddaway; Ross Kliegman; Michael Mcloughlin; Lara Moore; Dexter Smith; Dan Stewart; 1Zeteo Tech, Inc., Sykesville, MD

Imaging MS: Disease Markers (REMOTE POSTERS)

FP 298 Amyloid Plaque Polymorphism is Associated with Distinct Lipid Accumulations Revealed by Trapped Ion Mobility (TIMS) Mass Spectrometry Imaging; Wojciech Michno; Patrick Wehrli; Srinivas Koutarapu; Christian Marsching; Sven Meyer; Henrik Zetterberg; Kaj Blennow; Corinna Henkel; Janina Oetjen; Carsten Hopf; Jörg Hanrieder; 1University of Gothenburg, Göteborg, Sweden; 2Department of Neuroscience, Physiology and Pharmacology; University College London, London, United Kingdom; 3Stanford University, Stanford, CA; 4Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim Technical University, Mannheim, Germany; 5Bruker Daltonics GmbH & Co. KG, Bremen, Germany; 6Bruker Daltonics GmbH & Co.KG, Bremen, Germany; 7Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden; 8Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, United Kingdom; 9UK Dementia Research Institute, University College London, London, United Kingdom; 10Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, United Kingdom
<table>
<thead>
<tr>
<th>FP 309</th>
<th>High Resolution Imaging Time-of-Flight Mass Spectrometer; Gennadi Lebedev; Getom Analytical Instrumentation, Petaluma, CA</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP 325</td>
<td>Exploration of the soybean root nodule symbiosome by intact protein MALDI-MSI on an UHMR-Orbitrap; Kevin J. Zemaitis¹; Dušan Veličković¹; Mowei Zhou¹; William R. Kew¹; Gary Stacey²; Ljiljana Paša-Tolić¹; ¹Pacific Northwest National Laboratory, Richland, WA; ²University of Missouri, Columbia, MO</td>
</tr>
<tr>
<td>FP 337</td>
<td>Lipid signatures and cell heterogeneity of human microglia cells visualized by AP-SMALDI MSI; Max Alexander Müller¹; Maria Weinert²; Bernhard Spengler¹; Sven Heiles¹; ¹Justus Liebig University Giessen, Giessen, Germany; ²Imperial College London, London, United Kingdom</td>
</tr>
</tbody>
</table>
Install the latest version of Zoom on your device. You need the latest version of Zoom installed on your laptop in order to utilize the self-select breakout room feature. You do not need a paid Zoom account, a free account is fine.

- JOIN THE ZOOM MEETING and enter the main room. Please share your video and audio to foster interactions!
- Breakout rooms will be labeled with poster code (e.g. FP 009 or FP 310). Presenters will be in their breakout room with their screen shared and ready to ‘present’ to you or answer questions.
- Using the table of contents below identify the breakout room you wish to visit.

- You may enter and exit breakout rooms as you wish. Note that each time you exit a breakout you will land back in the main meeting where you can choose a new breakout from the list.

Detail of poster titles and authors are provided on the next pages. If you wish to read an abstract, please consult the online planner or mobile app. Simply enter the poster code in the ‘Search’ to quickly locate corresponding abstract.

Table of Contents

Informatics: Algorithms and Statistical Advances .. FP 346.5; FP 348
Informatics: General, SRM, and DIA ... FP 355
Informatics: Peptide ID and Quantification ... FP 366.5; FP 374
Informatics: Workflow and Data Management ... FP 376; FP 384
Instrumentation: New Concepts .. FP 400
Ion Mobility: Applications .. FP 416; FP 434; FP 435; FP 435.5
Ion Mobility: FAIMS/DMS .. FP 439.5
Ion Mobility: General .. FP 447.5
Ion Mobility: Structure .. FP 452
LC/MS: Chromatography and Software ... FP 464
LC/MS: General .. FP 465; FP 467
Lipids: ID and Structural Analysis .. FP 495
MALDI: Applications .. FP 516
MALDI: Sample Preparation .. FP 519
Metabolomics: Untargeted Metabolite Profiling ... FP 558; FP 559
Nucleic Acids and Oligonucleotides ... FP 573; FP 588
Peptidomics .. FP 607
Polymers .. FP 628; FP 630
Protein Therapeutics: Quantitative Analysis ... FP 641
Protein Therapeutics: Structural Characterization ... FP 647
Proteins: Complexes/Non-covalent Interactions ... FP 648
Proteins: Conformation Analysis and Structural Biology ... FP 654
Proteomics: Intact Proteins .. FP 684
Proteomics: Tissue .. FP 711
Proteomics: Top Down Analysis .. FP 721
Single Cell MS .. FP 738
Small Molecules: Qualitative Analysis .. FP 740
Systems Biology .. FP 765; FP 767
TUESDAY, NOVEMBER 16, 12:00 – 1:30 PM EASTERN – Parallel 2

Informatics: Algorithms and Statistical Advances (REMOTE POSTERS)

FP 346.5 Prediction of Hydrogen Deuterium Exchange Rate by Deep Learning; Jiali Yu¹; Ugur Uzuner²; Joshua Yuan¹; Susie Dai³; ¹Synthetic and Systems Biology Innovation Hub, Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas; ²Department of Molecular Biology and Genetics, Karadeniz Technical University, Trabzon, Turkey; ³Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas

FP 348 Super-resolution in FT-ICR MS by non-Fourier Transform genetic evolution signal processing; Marc A Haegelin¹; Ulviya Abdulkarimova², ³; Pierre Collet³; Christian Rolando⁴, ⁵; ¹Miniaturization for Synthesis, Analysis & Proteomics, USR 3290, CNRS, University of Lille, Villeneuve d’Ascq, France; ²Azerbaijan State University of Oil and Gas Industry, Bakou, Azerbaijan; ³Cube, Complex System and Translational Bioinformatics, UMR CNRS 7357, Strasbourg, France; ⁴Miniaturization for Synthesis, Analysis & Proteomics, USR 3290, CNRS, University of Lille, 59655 Villeneuve d’Ascq Cedex, France; ⁵Shrieking Sixties, 1-3 Allée Lavoisier, 59650 Villeneuve d’ascq Cedex, France

Informatics: General, SRM, and DIA (REMOTE POSTERS)

FP 355 Philosopher: a complete toolkit for conventional and open search proteomics data analysis; Felipe Da Veiga Leprevost¹; Sarah E. Haynes¹; Alexey I. Nesvizhskii¹; ¹University of Michigan, Ann Arbor, MI

Informatics: Peptide ID and Quantification (REMOTE POSTERS)

FP 366.5 ionbot: a novel, innovative and sensitive machine learning approach to LC-MS/MS peptide identification; Sven Degroeve¹; Ralf Gabriels¹; Robin Bouwmeester¹; Kevin Velghe²; Natalia Tichshenko²; Lennart Martens³; ¹Ghent University, VIB, Zwijnaarde, Belgium; ²VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium

Informatics: Protein ID and Quantification (REMOTE POSTERS)

FP 374 Proteoform-centric searching of top-down proteomics data from isotopically depleted samples without deconvolution using GEX; David S. Butcher¹; Lissa C. Anderson¹; ¹ion cyclotron resonance program, National High Magnetic Field Laboratory, Tallahassee, FL

Informatics: Workflow and Data Management (REMOTE POSTERS)

FP 376 New Data Marshalling Design System for Automated Processing LC/UV/MS Data; Richard Lee¹; Anne Marie Smith¹; ¹ACD/Labs, Toronto, ON

FP 384 CoreMS: Mass Spectrometry Software Framework and Acquisition-Time Data Analysis; Yuri E. Corilo¹; William R. Kew¹; Allison M. Thompson¹; Anastasiya V. Prymolenka¹; Fnu Anubhav²; Kevin M. Fox²; Lee Ann Mccue³; ¹Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA; ²Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA

Instrumentation: New Concepts (REMOTE POSTERS)

FP 400 A method for the structural analysis and time resolved imaging of bio-macromolecular assemblies in mass spectrometry using Timepix detector; Anjusha Mathew¹; Gert B. Eijkel¹; Frans Giskes¹; Joel D. Keelor²; Ian G. M. Anthony¹; Jingming Long³; Alexander Lekkas³; Kyle Fort⁴; Jord Prangsmga⁵; Albert J. R. Heck⁵, ⁶; Dimitris Papanastasiou³; Alexander Makarov⁴, ⁵; Shane R. Ellis¹, ⁷; Ron M. A. Heeren¹; ¹Maastricht Multimodal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, Netherlands; ²Amsterdam Scientific Instruments (ASI), Science Park 106, Amsterdam, Netherlands; ³Fasmatech Science and Technology, Demokritos NCSR, Athens, Greece; ⁴Thermo Fisher Scientific (Bremen), Bremen, Germany; ⁵Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands; ⁶Netherlands Proteomics Center, Utrecht, Netherlands; ⁷Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ion Mobility: Applications (REMOTE POSTERS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP 416</td>
<td>High sensitivity immunopeptidomics on the TIMS-TOF Pro-2 Mass Spectrometer; David Gomez-Zepeda¹,²; Elena Kumm¹; Daniille Arnold-Schild²; Stefan Tenser³;³; HI-TRON, Deutsches Krebsforschungszentrum (DKFZ), Mainz, Germany; ²Institute for Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; ³HI-TRON, Deutsches Krebsforschungszentrum (DKFZ), Mainz, Germany</td>
<td>David Gomez-Zepeda¹,²; Elena Kumm¹; Daniille Arnold-Schild²; Stefan Tenser³;³; HI-TRON, Deutsches Krebsforschungszentrum (DKFZ), Mainz, Germany; ²Institute for Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; ³HI-TRON, Deutsches Krebsforschungszentrum (DKFZ), Mainz, Germany</td>
</tr>
<tr>
<td>FP 434</td>
<td>Preliminary Evaluation of an Extended Range Ion Mobility Spectrometer Determines CCS of Small Proteins to AAV's; Ben Aguilar¹; Henry Benner¹; IonDX Inc., Monterey, CA</td>
<td>Ben Aguilar¹; Henry Benner¹; IonDX Inc., Monterey, CA</td>
</tr>
<tr>
<td>FP 435</td>
<td>Metabolite Profiling using Liquid Chromatography, Ion Mobility and Data-Independent Acquisition Mass Spectrometry for Synthetic Biology Applications; Aivett Bilbao¹; Nathalie Munoz¹; Joohoon Kim¹; Daniel J Orton¹; Yiqian Gao¹; Karl Weitz¹; Kyle Pomraning²; Shuang Deng³; Beth Hofstad³; Ziyu Dai³; Richard D. Smith¹; Erin S Baker¹; Young-Mo Kim¹; Alex Apfel¹; John Magnuson²; Kristin E Burnum-Johnson¹; Pacific Northwest National Laboratory, Richland, WA; ²Chemical and Biological Processes Development Group, Richland, WA; ³North Carolina State University, Raleigh, NC; ⁴Agilent Technologies, Santa Clara, CA</td>
<td>Aivett Bilbao¹; Nathalie Munoz¹; Joohoon Kim¹; Daniel J Orton¹; Yiqian Gao¹; Karl Weitz¹; Kyle Pomraning²; Shuang Deng³; Beth Hofstad³; Ziyu Dai³; Richard D. Smith¹; Erin S Baker¹; Young-Mo Kim¹; Alex Apfel¹; John Magnuson²; Kristin E Burnum-Johnson¹; Pacific Northwest National Laboratory, Richland, WA; ²Chemical and Biological Processes Development Group, Richland, WA; ³North Carolina State University, Raleigh, NC; ⁴Agilent Technologies, Santa Clara, CA</td>
</tr>
<tr>
<td>FP 435.5</td>
<td>Investigation of Linear and Cyclic Structures of Thermostresponsive Polymers by Ion Mobility Tandem Mass Spectrometry; Andrew S Mcgee¹; Yuan Xue²; Chrys Wesdemiotis¹; The University of Akron, Akron, OH; Oberlin College, Oberlin, OH</td>
<td>Andrew S Mcgee¹; Yuan Xue²; Chrys Wesdemiotis¹; The University of Akron, Akron, OH; Oberlin College, Oberlin, OH</td>
</tr>
<tr>
<td>Ion Mobility: FAIMS/DMS (REMOTE POSTERS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP 439.5</td>
<td>On the accuracy of a fast quantification of metabolites in plasmas based on a differential mobility parameter; Yali Wang¹; Francis Berthias²; Eskander Alhajji¹; Bernard Rieul¹; Pascal Pernot¹; Jean-François Benoist³; Philippe Maître¹; University of Paris Saclay, ORSAY, France; University of Southern Denmark, Odense, Denmark; Hôpital Necker-Enfants Malades, Paris, France</td>
<td>Yali Wang¹; Francis Berthias²; Eskander Alhajji¹; Bernard Rieul¹; Pascal Pernot¹; Jean-François Benoist³; Philippe Maître¹; University of Paris Saclay, ORSAY, France; University of Southern Denmark, Odense, Denmark; Hôpital Necker-Enfants Malades, Paris, France</td>
</tr>
<tr>
<td>Ion Mobility: General (REMOTE POSTERS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP 447.5</td>
<td>Influence of ionization source parameters on native peptides/proteins: An unconventional approach for thermal denaturation and collision induced unfolding; Mack Shih¹; Patrick J. Faustino¹; Jinhui Zhang¹; Food and Drug Administration, Silver Spring, MD</td>
<td>Mack Shih¹; Patrick J. Faustino¹; Jinhui Zhang¹; Food and Drug Administration, Silver Spring, MD</td>
</tr>
<tr>
<td>Ion Mobility: Structure (REMOTE POSTERS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP 452</td>
<td>Characterizing Domain-Correlated Unfolding Pathways using Electron Capture Dissociation; Carolina Rojas Ramirez¹; Chae Kyung Jeon¹; Ruwan T. Kurulugama²; John C. Fjeldsted²; Brandon T. Ruotolo¹; University of Michigan, Ann Arbor, MI; Agilent Technologies, Santa Clara, CA</td>
<td>Carolina Rojas Ramirez¹; Chae Kyung Jeon¹; Ruwan T. Kurulugama²; John C. Fjeldsted²; Brandon T. Ruotolo¹; University of Michigan, Ann Arbor, MI; Agilent Technologies, Santa Clara, CA</td>
</tr>
<tr>
<td>LC/MS: Chromatography and Software (REMOTE POSTERS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP 464</td>
<td>The optimized curved LC gradient method for analyzing complex mixtures by high-resolution hybrid mass spectrometry; Leila Afjehi; University of Vienna, Vienna, Austria</td>
<td>Leila Afjehi; University of Vienna, Vienna, Austria</td>
</tr>
<tr>
<td>LC/MS: General (REMOTE POSTERS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP 465</td>
<td>Enhancing the data quality by high-speed analysis on a single quadrupole mass spectrometer; Katsuaki Kotersawa¹; Natsuyo Asano¹; Keisuke Iso¹; Kazuo Mukai-batake¹; Kyoko Watanabe¹; Atsuhioko Toyama³; Shimadzu Corporation, Kyoto, Japan; Shimadzu Corp., Kyoto, Japan</td>
<td>Katsuaki Kotersawa¹; Natsuyo Asano¹; Keisuke Iso¹; Kazuo Mukai-batake¹; Kyoko Watanabe¹; Atsuhioko Toyama³; Shimadzu Corporation, Kyoto, Japan; Shimadzu Corp., Kyoto, Japan</td>
</tr>
<tr>
<td>FP 467</td>
<td>Sensitive analysis of saccharides using liquid chromatography-tandem mass spectrometry with online, in-source phenylboronic acid derivatization; Derek R Heiss¹;³; Abraham K. Badu-Tawiah³; Battelle Memorial Institute, Columbus, OH; The Ohio State University, Columbus, OH</td>
<td>Derek R Heiss¹;³; Abraham K. Badu-Tawiah³; Battelle Memorial Institute, Columbus, OH; The Ohio State University, Columbus, OH</td>
</tr>
<tr>
<td>Lipids: ID and Structural Analysis (REMOTE POSTERS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP 495</td>
<td>Lipid isomer separation and C=C double bond localization using ozone-induced dissociation and ion mobility spectrometry; Xueyun Zheng¹; Aivett Bilbao¹; Joon-Yong Lee¹; Berwyck Poad²; Stephen J Blanksby²; Erin Baker³; Yehia Ibrahim¹; Richard Smith¹; Pacific Northwest National Laboratory, Richland, WA; Queenslands University of Technology, Brisbane, Australia; North Carolina State University, Raleigh, NC</td>
<td>Xueyun Zheng¹; Aivett Bilbao¹; Joon-Yong Lee¹; Berwyck Poad²; Stephen J Blanksby²; Erin Baker³; Yehia Ibrahim¹; Richard Smith¹; Pacific Northwest National Laboratory, Richland, WA; Queenslands University of Technology, Brisbane, Australia; North Carolina State University, Raleigh, NC</td>
</tr>
<tr>
<td>MALDI: Applications (REMOTE POSTERS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP 516 Matrix-Assisted Laser Desorption Ionization Mass Spectrometry Imaging Characterization of an Alkaline Embolization Solution for Transarterial Cancer Therapy; Danielle Stolley¹; Shubhneet Warar²; Emily A. Thompson¹; Brett Pogostin³; Marina Yu⁴; Kevin Mchugh⁵; Erin H. Seeley⁶; A. Colleen Crouch⁴,⁵; Erik N. K. Cressman¹; ¹University of Texas MD Anderson Cancer Center, Houston, TX; ²Bayler University, Waco, TX; ³Rice University, Houston, TX; ⁴University of Texas - Austin, Austin, TX; ⁵University of Tennessee, Knoxville, TN</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MALDI: Sample Preparation (REMOTE POSTERS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP 519 Evaluation of Spraying and Sublimation Devices for Matrix Application in MALDI Imaging; Martin Handelshauser¹; Peter Sandbichler¹; Kenta Terashima²; Koretsugu Ogata³; Martina Marchetti-Deschmann¹; ¹TU Wien, Vienna, Austria; ²Shimadzu Corporation, Research and Development Department, Analytical & Measuring Instruments Division, Kyoto, Japan; ³Shimadzu Corporation, MS Business Unit, Life Science Business Department, Analytical & Measuring Instruments Division, Kyoto, Japan</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metabolomics: Untargeted Metabolite Profiling (REMOTE POSTERS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP 558 Liquid Chromatography-Mass Spectrometry-Based Pharmacometabolomics Approach Reveals Plasma Predose Metabolic Signature Contribute to Pharmacokinetic Parameters Predictions in Healthy Volunteers; Gustavo Duarte¹; Anne Silveira¹; Anna Maria Alves De Piloto Fernandes¹; Pedro Henrique Dias Garcia¹; Patricia de Oliveira Carvalho¹; ¹São Francisco University, Bragança Paulista, Brazil</td>
</tr>
<tr>
<td>FP 559 Trapped ion mobility PASEF based Lipidomics highlights potential lipid bio-markers of Covid-19 severity; Eduardo Sommella¹; Fabrizio Merciai¹; Emanuela Salviati¹; Albino Carrizzo²; Michele Ciccarelli²; Paola Di Pietro²; Carmine Vecchione²; Aiko Barsch³; Sven Meyer³; Pietro Campiglia¹; ¹University of Salerno, Department of Pharmacy, Fisciano, Italy; ²University of Salerno, Department of Medicine and Surgery, Baronissi, Italy; ³Bruker Daltonics GmbH & Co. KG, Bremen, Germany</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nucleic Acids and Oligonucleotides (REMOTE POSTERS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP 573 Synthetic Oligonucleotide Sequencing by Tandem Mass Spectrometry; A M Abdullah¹; Tamanna Azam¹; Cynthia Sommers¹; Jason Rodriguez¹; Kui Yang¹; ¹FDA, St. Louis, MO</td>
</tr>
<tr>
<td>FP 588 Utilizing the power of mass spectrometry for chemical probing of RNA; Michael Palasser¹; Kathrin Breuker¹; ¹University of Innsbruck, Innsbruck, Austria</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Peptidomics (REMOTE POSTERS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP 607 Optimization of Neuropeptide Detection and Quantitation from Crustacean Tissue and Hemolymph by Data Independent Acquisition Mass spectrometry (DIA-MS); Wenxin Wu¹; Min Ma¹; Lingjun Li¹; ¹University of Wisconsin-Madison, Madison, WI</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Polymers (REMOTE POSTERS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP 628 Analysis of industrial, natural and real-world high molecular weight polydienes by chemical depolymerization and high-resolution mass spectrometry; Ziad Mahmoud¹; Fabrice Bray¹; Marie Hubert-Roux²; Michel Sablier¹; Carlos Afonso²; Christian Rolando¹; ¹Miniaturization for synthesis, analysis and proteomics-Université of Lille, Villeneuve d'Ascq, France; ²Chimie organique et bioorganique, Réactivité et Analyse (COBRA), Mont-Saint-Aignan Cedex, France; ³Muséum National d'Histoire Naturelle, Centre de Recherche sur la Conservation, Paris, France; ⁴Shrieking Sixties, VILLENEUVE D ASCQ, France</td>
</tr>
<tr>
<td>FP 630 Identification and unravelling of industrial and artists' alkyd paints and their reticulation using chemical depolymerization and ultra-high resolution mass spectrometry; Christian Rolando¹; Catherine Bordín¹; Ziad Mahmoud¹; Fabrice Bray¹; ¹Miniaturization for Synthesis, Analysis & Proteomics, USR 3290, CNRS, University of Lille, Villeneuve d'Ascq, France; ²Shrieking Sixties, 1-3 Allée Lavoisier, Villeneuve d'Ascq, France</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Protein Therapeutics: Quantitative Analysis (REMOTE POSTERS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP 566 Protein Therapeutics: Quantitative Analysis (REMOTE POSTERS)</td>
</tr>
<tr>
<td>Session</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>TUESDAY, NOVEMBER 16, 12:00 – 1:30 PM EASTERN – Parallel 2</td>
</tr>
<tr>
<td>Protein Therapeutics: Structural Characterization (REMOTE POSTERS)</td>
</tr>
<tr>
<td>Proteins: Complexes/Non-covalent Interactions (REMOTE POSTERS)</td>
</tr>
<tr>
<td>Proteins: Conformation Analysis and Structural Biology (REMOTE POSTERS)</td>
</tr>
<tr>
<td>Proteomics: Intact Proteins (REMOTE POSTERS)</td>
</tr>
<tr>
<td>Proteomics: Tissue (REMOTE POSTERS)</td>
</tr>
<tr>
<td>Proteomics: Top Down Analysis (REMOTE POSTERS)</td>
</tr>
<tr>
<td>Single Cell MS (REMOTE POSTERS)</td>
</tr>
<tr>
<td>Small Molecules: Qualitative Analysis (REMOTE POSTERS)</td>
</tr>
<tr>
<td>Systems Biology (REMOTE POSTERS)</td>
</tr>
</tbody>
</table>
Global Proteomic Analysis Reveals a Novel Pathway Regulated by PERK, an ER Stress Sensor; Rathipriya Viswanathan1; Brain Stoveken1; Deborah Holstein1; Sammy Pardo1; Dana Molleur1; Susan T. Weintraub1; James D. Lechleiter1; 1Univ. of Texas HSC, San Antonio, TX
Remote Posters: Interactive Session

Install the latest version of Zoom on your device. You need the latest version of Zoom installed on your laptop in order to utilize the self-select breakout room feature. You do **not** need a paid Zoom account, a free account is fine.

- **JOIN THE ZOOM MEETING** and enter the main room. Please share your video and audio to foster interactions!
- Breakout rooms will be labeled with poster code (e.g. FP 009 or FP 310). Presenters will be in their breakout room with their screen shared and ready to ‘present’ to you or answer questions.
- Using the table of contents below identify the breakout room you wish to visit.

- You may enter and exit breakout rooms as you wish. Note that each time you exit a breakout you will land back in the main meeting where you can choose a new breakout from the list.

*Detail of poster titles and authors are provided on the next pages. If you wish to read an abstract, please consult the online planner or mobile app. Simply enter the poster code in the ‘Search’ to quickly locate corresponding abstract.***

Table of Contents

<table>
<thead>
<tr>
<th>Topic</th>
<th>Poster Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient Ionization: Applications</td>
<td>FP 012</td>
</tr>
<tr>
<td>Art, Archaeology & Paleontology</td>
<td>FP 038</td>
</tr>
<tr>
<td>Biomolecular Structure Analysis: Chemical</td>
<td>FP 081</td>
</tr>
<tr>
<td>Cannabis</td>
<td>FP 081.75</td>
</tr>
<tr>
<td>Carbohydrates</td>
<td>FP 086</td>
</tr>
<tr>
<td>Clinical Analysis</td>
<td>FP 093</td>
</tr>
<tr>
<td>Drug Discovery/DMPK/ADME</td>
<td>FP 120</td>
</tr>
<tr>
<td>Drug and Metabolite Analysis</td>
<td>FP 132; FP 134</td>
</tr>
<tr>
<td>Environmental: General</td>
<td>FP 156</td>
</tr>
<tr>
<td>Environmental: Pharmaceuticals and Pesticides</td>
<td>FP 169</td>
</tr>
<tr>
<td>Food Safety & Chemistry: Foodomics, Allergens, Bacteria, Foods, and</td>
<td>FP 188</td>
</tr>
<tr>
<td>Supplements</td>
<td>FP 196</td>
</tr>
<tr>
<td>Fundamentals: Ionization</td>
<td>FP 238.5</td>
</tr>
<tr>
<td>Glycoproteins</td>
<td>FP 264.5</td>
</tr>
<tr>
<td>Imaging MS: Disease Markers</td>
<td>FP 300</td>
</tr>
<tr>
<td>Imaging MS: Instrumentation</td>
<td>FP 306</td>
</tr>
<tr>
<td>Imaging MS: Method Development</td>
<td>FP 311; FP 314; FP 316; FP 321; FP 328</td>
</tr>
<tr>
<td>Imaging MS: Pharmaceuticals, Metabolites, and Lipids</td>
<td>FP 331; FP 335; FP 338; FP 339</td>
</tr>
<tr>
<td>Informatics: Peptide ID and Quantification</td>
<td>FP 365; FP 373</td>
</tr>
<tr>
<td>Instrumentation: New Developments in Ion Detection</td>
<td>FP 400.5</td>
</tr>
<tr>
<td>Instrumentation: New Developments in Mass Analyzers</td>
<td>FP 410</td>
</tr>
<tr>
<td>Ion Mobility: Applications</td>
<td>FP 429</td>
</tr>
<tr>
<td>LC/MS: Sample Preparation</td>
<td>FP 478</td>
</tr>
<tr>
<td>Lipids: General</td>
<td>FP 482</td>
</tr>
<tr>
<td>Lipids: Profile Analysis</td>
<td>FP 498; FP 501</td>
</tr>
<tr>
<td>MALDI: Applications</td>
<td>FP 515</td>
</tr>
<tr>
<td>Metabolomics: Clinical Applications</td>
<td>FP 520</td>
</tr>
<tr>
<td>Metabolomics: General</td>
<td>FP 530</td>
</tr>
</tbody>
</table>

Table of Contents continues on next page.
Metabolomics: Identification of Unknown Metabolites ... FP 535.5; FP 536; FP 537
Metabolomics: Targeted and Quantitative Analysis ... FP 546
Metabolomics: Untargeted Metabolite Profiling ... FP 555
Nanomaterials .. FP 564; FP 565
Nucleic Acids and Oligonucleotides ... FP 575
Peptides: Targeted and Quantitative Analysis .. FP 599.5; FP 604
Phosphopeptides: Enrichment Methods ... FP 614
Protein Therapeutics: Quantitative Analysis ... FP 638
Protein Therapeutics: Structural Characterization ... FP 644.5
Proteins: PTMs ... FP 659
Proteomics: New Approaches .. FP 687
Proteomics: Quantitative .. FP 700.5
Single Cell MS ... FP 730
Small Molecules: Qualitative Analysis ... FP 742; FP 750; FP 751
Stable Isotope Labeling ... FP 760.5
Systems Biology ... FP 763.5; FP 766

Ambient Ionization: Applications (REMOTE POSTERS)

FP 012 Immuno-enriched microsphere-magnetic blade spray tandem mass spectrometry (iMBS-MS/MS) for marine toxin detection in shellfish; Ariadni Geballa-Koukoula¹; Arjen Gerssen¹; Marco H. Blokland¹; Christopher T. Elliott²; Janusz Pawlisyn³; Michel W.F. Nielen¹, 4; ¹Wageningen Food Safety Research, Wageningen University and Research, Wageningen, Netherlands; ²Institute for Global Food Security, School of Biological Sciences, Queen’s University, Belfast, United Kingdom; ³Department of Chemistry, University of Waterloo, Waterloo, Ontario; 4Laboratory of Organic Chemistry, Wageningen University, Wageningen, Netherlands

Art, Archaeology & Paleontology (REMOTE POSTERS)

FP 038 Step by Step: Development of an In-solution Digestion Protocol for the Study of Collagen Degradation in Parchment; Antonia Malissa¹; ²; Manfred Schreiner¹; ²; Martina Marchetti-deschmann¹; ¹Vienna University of Technology, Institute of Chemical Technologies and Analytics, Vienna, Austria; ²Academy of Fine Arts Vienna, Institute of Natural Sciences and Technology in the Arts, Vienna, Austria

Biomolecular Structure Analysis: Chemical Crosslinking and Covalent Labeling (REMOTE POSTERS)

FP 081 MS-cleavable crosslinkers: a deep dive into public data; Lars Kolbowski¹; Swantje Lenz¹; Juri Rappsilber¹, ²; ¹TU Berlin, Berlin, Germany; ²University of Edinburgh, Edinburgh, United Kingdom

Cannabis (REMOTE POSTERS)

FP 082.75 The comparison of SPE and immunoaffinity column extraction methods for the quantification of mycotoxins using LC-MS/MS in a cannabis matrix; Sarah Lyons¹; Ryan Hayward¹; Seamus Riordan-Short¹; Robert O'brien¹, ²; ¹Supra Research and Development, Kelowna, BC; ²University of British Columbia, Vancouver, BC

Carbohydrates (REMOTE POSTERS)

FP 086 Differentiation of Structural- and Linkage Isomers of Human Milk Oligosaccharides using UHPLC with Charge Transfer Dissociation Mass Spectrometry (CTD-MS); Praneeth M. Mendis¹; Glen P. Jackson¹, ²; ¹C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV; ²Department of Forensic and Investigative Science, West Virginia University, Morgantown, WV

Clinical Analysis (REMOTE POSTERS)

FP 093 Sensitive measurement of hydroxy metabolites of Vitamin-D and respective epimers using LC-MS/MS which overcomes challenges of chemiluminescent immunoassay; Siji Joseph¹; Suet Ying Lee², ³; Sunil Chidambar Kulkarni³; Andrea Leonardí; Erhan Simsek¹; Robin Philip¹; David Bradley¹; Chee-Sian Gan¹; Tze Ping Loh⁵; Markus R. Wenk¹, ³; Amaury Cazenave-Gassiot², ³; Anne K. Bendt³; ¹Agilent Technologies, Singapore,
Drug Discovery/DMPK/ADME (REMOTE POSTERS)

FP 120 Detection of protein-drug complexes under native conditions in the low nM range using Magnetic resonance mass spectrometry (MRMS); Matthias Witt1; Yongwei Wang2; Michael Greig3; Jia Liu4; Changqiang Ke4; Yang Ye4; 1Bruker Daltonik GmbH, Bremen, Germany; 2Bruker Daltonics Corporation, Shanghai, China; 3Bruker Daltonics, Billerica, Massachusetts; 4Shanghai Institute of Materia Medica, Shanghai, China

Drug and Metabolite Analysis (REMOTE POSTERS)

FP 132 Analysis of Favipiravir in human plasma using fully automated sample preparation LC/MS/MS system; Eishi Imoto; Shimadzu corp., Kyoto, Japan

FP 134 An evaluation of rapid method for simultaneous analysis of ciclesonide and its impurities in an inhaler using online SFE-SFC-QTOFMS; Takahiro Goda1; Tetsuo lida2; Junichi Masuda1; Shinnosuke Horie2; Seiji Tanaka3; Nahoko Uchiyama3; Sayaka Masada1; Ryoko Ara3; Eiichi Yamamoto3; Takashi Hakamatsuka3; Haruhiro Okuda1; Yukihiro Goda3; 1Shimadzu Corporation, Hadano, Japan; 2Shimadzu Corp., Kyoto, Japan; 3National Institute of Health Sciences, Kawasaki, Japan

Environmental: General (REMOTE POSTERS)

FP 156 Advanced characterization of marine dissolved organic matter: an analytical pipeline for hyphenation of liquid chromatography and ultrahigh resolution mass spectrometry; Fabian Moye1, 2; Boris P. Koch2, 3; Matthias Witt4; Jan Tebben2; 1Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany; 2Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany; 3University of Applied Sciences, Bremerhaven, Germany; 4Bruker Daltonics GmbH & Co. KG, Bremen, Germany

Environmental: Pharmaceuticals and Pesticides (REMOTE POSTERS)

FP 169 Quantification of fluctuating industrial emissions of pharmaceuticals in wastewater - Comparing onsite Orbitrap measurements with a fully automated lab workflow; Julian Bosshard1; Anne Dax1; Rebekka Gulde2; Heinz Singer1; 1EAWAG, Dübendorf, Switzerland; 2Association of Swiss Wastewater and Water Protection Professionals, Glattbrugg, Switzerland

Food Safety & Chemistry: Foodomics, Allergens, Bacteria, Foods, and Supplements (REMOTE POSTERS)

FP 188 Identification of isoflavonoid phytoalexins biosynthesised in common bean (Phaseolus vulgaris) in response to bacterial blight using untargeted metabolomics profiling; Lili Mats1; Laura Cox2; Honghui Zhu1; Gale Bozzo2; 1Agriculture and Agrifood Canada, Guelph, ON; 2University of Guelph, Guelph, ON

Food Safety: General (REMOTE POSTERS)

FP 196 Compensating matrix effect and low extraction recoveries by adopting procedural standard calibration approach for quantification of mycotoxins in milk samples; Prasanth Joseph1; Rohit Ojha1; Saikat Banerjee1; Kannan Balakrishnan1; 1Agilent Technologies, Bangalore, India

Fundamentals: Ionization (REMOTE POSTERS)

FP 238.5 Understanding the mechanism of native supercharging of nucleic acids by ion mobility mass spectrometry; Debasmita Ghosh1, 2, 3; Frederic Rosu4, 5; Valérie Gabelica1, 2, 3; 1Institut national de la santé et de la recherche médicale, INSERM, Pessac, France; 2Le laboratoire ARNA (Acides nucléiques : Régulations naturelles et artificielles), Pessac, France; 3Univ. Bordeaux, UMR 5320, U1212, IECB, Pessac, France; 4Le Centre national de la recherche scientifique, CNRS, Pessac, France; 5Univ. Bordeaux, UMS 3033, F-33600, IECB, Pessac, France

Glycoproteins (REMOTE POSTERS)

FP 264.5 Post-translational modification (PTM) profiling on fusion protein Aflibercept using a novel fragmentation technique; Xuezhi Bi1; Zoe Zhang2; 1Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; 2Sciex, Redwood City, CA
Imaging MS: Disease Markers (REMOTE POSTERS)

FP 300 High-resolution DESI mass spectrometry lipidomic imaging of human carotid plaque; Nuria Slijkhuis¹; Mark Towers²; Mina Mirzaian¹; Ingeborg M. Nieuwenhuizen¹; Kim Van Gaalen¹; Eric J.G. Sijbrands¹; Yolanda B. De Rijke¹; Heleen M.M. Van Beusekom³; Kim Van Der Heiden¹; Emmanuelle Claude²; Gijs Van Soest¹; ¹Erasmus Medical Center, Rotterdam, Netherlands; ²Waters, Wilmslow, United Kingdom

Imaging MS: Instrumentation (REMOTE POSTERS)

FP 306 Probing the Molecular Basis of Mild Traumatic Brain Injury using Desorption Electrospray Ionization Cyclic Ion Mobility-Mass Spectrometry Imaging; Dmitry Leontyev¹; Bindesh Shrestha²; Hernando Olivos³; Alexis N Pulliam¹; Manvitha Manyam¹; Michelle C Laplaca¹, ³, ⁴; Facundo M. Fernandez¹; ¹Georgia Institute of Technology, Department of Chemistry and Biochemistry, Atlanta, GA; ²Waters Corp, Milford, MA; ³Georgia Institute of Technology, Coulter Department of Biomedical Engineering, Atlanta, GA; ⁴Emory University, Atlanta, GA

Imaging MS: Method Development (REMOTE POSTERS)

FP 311 Multimodal MSI of key species to study Age-related Macular Degeneration; Joshua J O Millar¹; Susan Campbell¹; Catherine Duckett¹; Sarah Doyle²; Laura Cole¹; ¹Sheffield Hallam University, Sheffield, United Kingdom; ²Trinity College Dublin, the University of Dublin, Dublin, Ireland

FP 314 A Fast method for lipids screening using TLC and Mass Spectrometry imaging; Sophie Rappe¹; Johann Far¹; Gauthier Eppe¹; Edwin De Pauw¹; ¹Mass spectrometry laboratory, Liege, Belgium

FP 316 Localized Protein Information and Physiological Tissue Mechanics of Human Menisci; Martin Handelshauser¹, ²; Philipp J. Thurner²; Martina Marchetti-deschmann³; ¹Institute of Chemical Technologies and Analytics, TU Wien, Vienna, Austria; ²Institute of Lightweight Design and Structural Biomechanics, TU Wien, Vienna, Austria; ³Institute of Chemical Technologies and Analytics, TU Wien, Vienna, Austria

FP 321 Host-guest chemistry for multiplexed mass spectrometry imaging of sodium, potassium and endogenous metabolites in tissue; Leonidas Mavroudakis¹; Kyle D. Duncan¹; Ingela Lanekoff¹; ¹Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden

Imaging MS: Pharmaceuticals, Metabolites, and Lipids (REMOTE POSTERS)

FP 331 The absorption of drugs through porcine gastrointestinal tissue analysed by mass spectrometry imaging; Chloe E Spencer¹; Malcolm R Clench¹; Catherine Duckett¹; Stephen Rumbelow²; Steve Mellor³; ¹BMRC, Sheffield Hallam University, Sheffield, United Kingdom; ²CRODA Inc (B88), New Castle, DE19720; ³CRODA Europe Ltd, Leek, United Kingdom

FP 335 Improved molecular detection and acquisition speed using DESI mass spectrometry imaging quadrupole based mass spectrometer; Wei Rao¹; Emrys A Jones¹; Zoltan Takats¹; Emmanuelle Claude¹; ¹Waters Corporation, Wilmslow, United Kingdom; ²Imperial college London, London, United Kingdom

FP 338 Dual-polarity reactive MALDI matrix allows high-resolution mass spectrometry imaging and lipid double bond localization in atherosclerosis-prone apolipoprotein E-deficient mice; Fabian Wäldchen¹; Franziska Mohr²; Andreas H. Wagner²; Sven Heiles¹; ¹Justus-Liebig-Universität Giessen, Giessen, Germany; ²Medizinische Fakultät Heidelberg, Heidelberg, Germany

FP 339 Mass Spectrometry Imaging Enables Localization of Immuno- and Targeted Therapies Delivered Transarterially for Hepatocellular Carcinoma; Erin H. Seeley¹; Nina M. Munoz²; Rony Avritscher²; Bhanu Koppolu¹; Nivedita Ramkumar¹; Rhiannon Johnson¹; Steve Kangas³; Rahul A. Sheth³; ¹University of Texas at Austin, Austin, TX; ²University of Texas MD Anderson Cancer Center, Houston, TX; ³BTG/Boston Scientific, Natick, MA
Informatics: Peptide ID and Quantification (REMOTE POSTERS)

FP 365 Construction of amino acid sequence database for metaproteome analysis using genomes of closely related species; Nobuaki Miura; Yasushi Ishihama; Shujiro Okuda; Niigata University, Niigata, Japan; Kyoto University, Kyoto, Japan

Informatics: Protein ID and Quantification (REMOTE POSTERS)

FP 373 Repurposing Competitive Gene Set Tests for Differential Protein Expression Analysis; Junmin Wang; Raghothama Chaerkady; Shao Huan Samuel Weng; Lina Chakrabarti; Lisa Cazares; Sonja Hess; AstraZeneca, Gaithersburg, MD

Instrumentation: New Developments in Ion Detection (REMOTE POSTERS)

FP 400.5 CDMS mode of FTMS Orbital Frequency Analyser; Aleksandr Rusinov; Li Ding; Sergey Smirnov; Patrick Knight; Roch Andrzjewsky; Hiroki Waki; Shimadzu Research Laboratory, Manchester, United Kingdom; Ningbo University, Ningbo, China; Shimadzu Corp., Kyoto, Japan

Instrumentation: New Developments in Mass Analyzers (REMOTE POSTERS)

FP 410 Experimental Studies of a Novel Multi-turn Time-of-Flight Mass Spectrometer and Its Applications for High Mass Molecules; Yusuke Tateishi; Hiroyuki Miura; Koichi Kimura; Hikaru Shibata; Tamami Fujita; Tomoya Kudo; Masaru Nishiguchi; Hideaki Izumi; Osamu Furuhashi; Tomohito Nakano; Haruki Osa; Daisuke Okumura; Shimadzu Corporation, Kyoto, Japan

Ion Mobility: Applications (REMOTE POSTERS)

FP 429 Cyclic peptide protomers detection in the gas phase: impact on CCS measurement and fragmentation patterns; Andréa Mccann; Christopher Kune; Johann Far; Philippe Massonnet; Marc Ongenae; Gauthier Eppe; Loic Quinton; Edwin De Pauw; Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Liege, Belgium; Maastricht Multimodal Molecular Imaging (M4i) institute, Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, Netherlands; Shimadzu Research Laboratory, TERRA research center, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium

LC/MS: Sample Preparation (REMOTE POSTERS)

FP 478 Obtaining More Reproducible Data using A Novel Hybrid Technology to Remove Phospholipids from Plasma/Sera in a High Throughput Format; James Edwards; Kevin Doolan; Amy Johnson; George Whitfield; J. G. Finneran, Vineland, NJ; Porvair Sciences, Wrexham, United Kingdom

Lipids: General (REMOTE POSTERS)

FP 482 Discrimination of Beef from Different Origins Based on Lipidomics: a Comparison Study of DART-QTOF and LC-ESI-QTOF; Kewen Wang; Zhenzhen Xu; China Agriculture University, Beijing, China; Chinese Academy of Agricultural Sciences, Beijing, China

Lipids: Profile Analysis (REMOTE POSTERS)

FP 498 Targeted LC-MS/MS profiling for the identification of the key enzymes involved in lysosphatidic acid metabolism; Emily Armitage; Aurelien Tripp; Nikos Koundouros; David J Magee; Alan Barnes; Neil J Loftus; George Poulogiannis; Shimadzu, Manchester, United Kingdom; Signalling and Cancer Metabolism Team, Division of Cancer Biology, The Institute of Cancer Research, London, United Kingdom; Alan Meyer Cancer Center, Well Cornell Medicine, New York, NY; Pain Medicine Department, The Royal Marsden Hospital, London, United Kingdom

FP 501 Investigation of skin-relevant lipids and their oxidized state after UVA exposure via ESI and MALDI FTICR MS; Samuele Zoratto; Selma Avdić; Christopher Kremslehner; Michaela Sochorova; Florian Gruber; Martina Marchetti-deschmann; TU Wien, Wien, Austria; Medical University of Vienna, Vienna, Austria

MALDI: Applications (REMOTE POSTERS)

FP 515 Quick Detection and Confirmation of Pigments in Cosmetics by MALDI-MS and high-energy MALDI-MS/MS analyses; Simona Salvo; Shimadzu, Manchester, UK; Manchester, United Kingdom
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metabolomics: Clinical Applications</td>
<td>Ethanol-induced metabolomic differences in the Gut-Liver-Pancreas Axis</td>
<td>Simon Ashton¹; Emily Armitage¹; Neil J Loftus¹; Olga Deda²; Thomas Meikopoulos³; Christina Virgiliu¹; Ian D Wilson⁴; Helen Gika²; ¹Shimadzu MS/BU, Manchester, United Kingdom; ²School of Medicine and CIRI BIOMIC_AUTH, Aristotle University, Thessaloniki, Greece; ³Department of Chemistry and CIRI BIOMIC_AUTH, Aristotle University, Thessaloniki, Greece; ⁴Imperial College London, London, United Kingdom</td>
</tr>
<tr>
<td>Metabolomics: General</td>
<td>Surface sampling capillary electrophoresis-mass spectrometry for spatial metabolomic profiling of tissue sections</td>
<td>Anastasia Golubova¹; Ingela Lanekoff¹; ¹Uppsala University, Uppsala, Sweden</td>
</tr>
<tr>
<td>Metabolomics: Identification of Unknown Metabolites</td>
<td>Comprehensive Approach for Dissolved Organic Matter Chemical Characterization using Orbitrap Fusion Mass Spectrometer Coupled with Ion and Liquid Chromatography Techniques</td>
<td>Daniela Bergmann¹; Hussain A. Abdulla¹; ¹Texas A&M University Corpus Christi, Corpus Christi</td>
</tr>
<tr>
<td>Metabolomics: Targeted and Quantitative Analysis</td>
<td>Metabolite Quantification using Multiplex Isotopic N,N-Dimethylated Leucine (iDiLeu) Tags</td>
<td>Olga L Riusech¹; Chris Sauer¹; Lingjun Li¹; ¹UW-Madison, Madison, WI</td>
</tr>
<tr>
<td>Metabolomics: Untargeted Metabolite Profiling</td>
<td>Mass spectrometry-based chemical cartography of mice with lab and natural microbiome</td>
<td>Morgan B Harris¹; Adwaita Parab¹; Benedikt Hild²; Mitchelle Katemauswa¹; Ji Hoon Oh²; Min Kyung Jung²; Rohit Mital¹; Barbara Rehermann²; Laura-Isobel Mccall¹; ¹University of Oklahoma, Norman, OK; ²Immunology Section, Liver Diseases Branch, NIDDK, National Institutes of Health, DHHS, Bethesda, MD</td>
</tr>
<tr>
<td>Nanomaterials</td>
<td>Virus-like particle (VLP) molecular weight determination via gas-phase electrophoresis (nES DMA instrumentation): a comparison to native nESI MS</td>
<td>Victor U. Weiss¹; Samuele Zoratto¹; Martina Marchetti-deschmann¹; Günter Allmaier¹; ¹TU Wien, Vienna, Austria</td>
</tr>
<tr>
<td>Nucleic Acids and Oligonucleotides</td>
<td>Characterization of extracellular vesicle containing samples via nES gas-phase electrophoresis (nES DMA), nanoparticle tracking analysis (NTA) and MS</td>
<td>Stefanie Steinberger¹; Sobha Karuthedom George³; Lucia Lauková⁵; René Weiss²; Carla Tripisciano³; Ruth Birner-Gruenberger¹; Victoria Weber²; Günter Allmaier¹; Victor U. Weiss¹; ¹TU Wien, Vienna, Austria; ²Danube University Krems, Krems, Austria</td>
</tr>
<tr>
<td></td>
<td>Effects of 5-methylcytidine modification of tRNA to other post-transcriptional modifications on the same tRNA</td>
<td>Mayu Ikai¹; Yuko Nobe¹; Masami Koike²; Mayu Tezuka¹; Yuka Yamaki¹; Hiroshi Nakayama²; Masato Taoka¹; ¹Tokyo Metropolitan University, Tokyo, Japan; ²RIKEN CSRS, Wako, Japan</td>
</tr>
</tbody>
</table>
Peptides: Targeted and Quantitative Analysis (REMOTE POSTERS)

FP 599.5 Quantifying lignin-degrading enzymes PobA and Pral in engineered Pseudomonas putida KT2440 strains using an LC-MS/MS Parallel Reaction Monitoring assay; Ikenna O Okekeogbu; Richard J. Giannone; Eugene Kuatsjah; Caralyn J. Szostkiewicz; Graham Dominick; Allison Werner; Christopher Johnson; Gregg Beckham; Robert L. Hettich; Oak Ridge National Laboratory, Oak Ridge, TN; National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO

FP 604 Application of in-sample calibration curve (ISCC) to peptide quantification by high resolution mass spectrometry (HRMS); Soumya Kandi; Qin Ji; John Paul Savaryn; Abbvie, North Chicago, IL; AbbVie, North Chicago, IL

Phosphopeptides: Enrichment Methods (REMOTE POSTERS)

FP 614 Fully automated sequential high-pH fractionation and phosphopeptide enrichment improves coverage and reproducibility of phosphoproteomics analysis; Delphine CM Rolland; Charlotte Brun; Sarah Cianférani; Serge Desmoulins; Shuai Wu; Christine Schaeffer-Reiss; Hopitaux Universitaire de Strasbourg, Strasbourg, France; Interface de Recherche Fondamentale et Appliquée en Cancérologie (IRFAC), INSERM UMR-S1113, Université de Strasbourg, Strasbourg, France; Laboratoire de Spectrométrie de masse BioOrganique (LSMBO), IPHC, CNRS, UMR 7178, Université de Strasbourg, Strasbourg, France; Agilent Technologies, Les Ulis, France; Agilent Technologies, Santa Clara, CA

Protein Therapeutics: Quantitative Analysis (REMOTE POSTERS)

FP 638 Host Cell Protein impurities characterization in biotherapeutics using finely tuned mass spectrometry-based workflows; Corentin Beaumal; Sega Ndiaye; Claire Dauly; Oscar Hernandez-Alba; Christine Carapito; Laboratoire de Spectrométrie de masse BioOrganique (LSMBO), IPHC, UMR 7178, Université de Strasbourg, CNRS, 25 rue Becquerel, 67087 Strasbourg, France; Thermo Fisher Scientific, 16 Avenue du Québec - BP 30210, 91941 Courtaboeuf Cedex, France

Protein Therapeutics: Structural Characterization (REMOTE POSTERS)

FP 644.5 Utility of Diethylpyrocarbonate (DEPC)-based Chemical Labeling in Epitope Mapping of Therapeutic Antibody; Yun Wang; Ekaterina Deyanova; Petia Shipkova; Olafur Gudmundsson; Richard Huang; BMS, Princeton, NJ

Proteins: PTMs (REMOTE POSTERS)

FP 659 Quantification of gluconoylation PTM in recombinant protein after basic pH hydrolysis treatment; Alessandro Vadi; GSK, Siena, Italy

Proteomics: New Approaches (REMOTE POSTERS)

FP 687 On the feasibility of using ultra-fast proteomics in drug target discovery studies; Anna A. Lobas; Julia A. Bubis; Elizaveta M. Solovyeva; Alexey A. Nazarov; Mark V. Ivanov; Victor G. Zgoda; Irina A. Tarasova; Lev I. Levitsky; Mikhail V Gorshkov; V.L. Talrose Institute for Energy Problems of Chemical Physics, Moscow, Russian Federation; Moscow State University, Moscow, Russian Federation; Orekhovich Institute of Biomedical Chemistry, Moscow, Russia

Proteomics: Quantitative (REMOTE POSTERS)

FP 700.5 Comprehensive Proteomic Characterization of Inflammatory and Alcohol-induced Phenotypes in Primary Mouse Astrocytes; Alexis Coiner; Ping Zhang; Jessica Wohlfahrt; Jennifer Guergues; Bin Liu; Stanley M. Stevens, Jr.; University of South Florida, Tampa, FL; University of Florida, Gainesville, Florida

Single Cell MS (REMOTE POSTERS)

FP 730 How to obtain elemental concentration information in single cells only by inductively coupled plasma-mass spectrometry?; Wen Qin; Hans-Joachim Stärk; Thorsten Reemtsma; Department of Analytical Chemistry, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany; Institute of Analytical Chemistry, University of Leipzig, Leipzig, Germany
Small Molecules: Qualitative Analysis (REMOTE POSTERS)

FP 742 Comparison of separation methods and ionization modes for the identification of the degradation products of α-ionone in “green” propellants; Caroline Damseaux1; Georges Scholl1; Alain Dejeaifve2; Rowan Dobson2; Xiaofeng Ma3; Edwin De Pauw1; Gauthier Eppe1; 1Mass Spectrometry Laboratory, Liège, Belgium; 2PB Clermont (Eurenco), Engis, Belgium; 3Laboratory of Organic and Medicinal Chemistry, Louvain-la-Neuve, Belgium

Small Molecules: Quantitative Analysis (REMOTE POSTERS)

FP 750 Factors affecting distributions of protonated monomers and proton bound dimers in APCI reactions; Elie Lattouf1; Osmo Anttalainen1; Tapio Kotiah3; Hanna Hakulinen1; Paula Vanninen1; Gary Eiceman1; 1University of Helsinki, Helsinki, Finland

FP 751 Workflow to simplify and improve specificity in quantitative analysis of field residue samples; Krishnamoorthy Kuppannan1; Chris Bianca1; Kimberly Campbell1; Joseph Gesell1; Sharry Fears1; Amy Latham1; 1Corteva Agriscience, Indianapolis, IN

Stable Isotope Labeling (REMOTE POSTERS)

FP 760.5 Using stable-isotope labeled nicotinamide and high resolution mass spectrometry to probe the impact of NAMPT activators on the intracellular NADome; Tumpa Dutta1; Stephen J Gardell1; 1Advent Health, Orlando, FL

Systems Biology (REMOTE POSTERS)

FP 763.5 High sensitivity mass spectrometry for cell-type resolved dissection of murine pancreatic islet biology; Marvin Thielert1; Claire Berthault1; Andreas-David Brunner1; Chloé Lourenco2; Raphael Scharffmann2; Matthias Mann1,3; 1Max Planck Institute of Biochemistry, Martinsried, Munich, Germany; 2Institute Cochin, INSERM, Université de Paris, Paris, France; 3NNF Center for Protein Research University of Copenhagen, Copenhagen, Denmark

FP 766 Multi-dimensional mass spectrometry reveals domains of reactivated heterochromatin in a 3D cell model; Stephanie Stransky1; Jennifer Aguilan1; Edward Nieves1; Simone Sidoli1; 1Albert Einstein College of Medicine, Bronx, NY
Install the latest version of Zoom on your device. You need the latest version of Zoom installed on your laptop in order to utilize the self-select breakout room feature. You do not need a paid Zoom account, a free account is fine.

- **JOIN THE ZOOM MEETING** and enter the main room. Please share your video and audio to foster interactions!
- Breakout rooms will be labeled with poster code (e.g. FP 009 or FP 310). Presenters will be in their breakout room with their screen shared and ready to ‘present’ to you or answer questions.
- Using the table of contents below identify the breakout room you wish to visit.

- You may enter and exit breakout rooms as you wish. Note that each time you exit a breakout you will land back in the main meeting where you can choose a new breakout from the list.

Detail of poster titles and authors are provided on the next pages. If you wish to read an abstract, please consult the online planner or mobile app. Simply enter the poster code in the ‘Search’ to quickly locate corresponding abstract.

Table of Contents

Art, Archaeology & Paleontology FP 040; FP 041
Artificial Intelligence in MS Instrumentation and Applications .. FP 047
Biomarkers: Discovery FP 056
Biomolecular Structure Analysis: Chemical Crosslinking and Covalent Labeling FP 077
Cannabis ... FP 082; FP 083.5
Clinical Analysis .. FP 096
Data-Independent Acquisition FP 107.5; FP 110; FP 113
Environmental: General FP 157
Environmental: Pharmaceuticals and Pesticides .. FP 171
Epigenetic Modifications FP 176
Food Safety & Chemistry: Foodomics, Allergens, Bacteria, Foods, and Supplements FP 193
Food Safety: General FP 208; FP 210
Forensics .. FP 222
Fundamentals: Ion Structure/Energetics FP 236
Glycoproteins FP 267; FP 272; FP 276
Imaging MS: Disease Markers FP 301; FP 302; FP 303
Imaging MS: Instrumentation FP 305
Imaging MS: Pharmaceuticals, Metabolites, and Lipids ... FP 334
Imaging MS: Sample Preparation FP 344
Informatics: Algorithms and Statistical Advances ... FP 350
Informatics: Metabolomics FP 360
Informatics: Peptide ID and Quantification FP 369
Instrumentation: General FP 388
Instrumentation: New Developments in Mass Analyzers FP 414
Ion Mobility: Applications FP 432
Ion Mobility: Fundamentals FP 446
Ion Mobility: General FP 449
LC/MS: Chromatography and Software FP 461.5

Table of Contents continues on next page.
Table of Contents, continued

LC/MS: Sample Preparation FP 480
Metabolomics: Targeted and Quantitative Analysis ... FP 542
Metabolomics: Untargeted Metabolite Profiling .. FP 553; FP 554; FP 556; FP 557
Natural Products .. FP 567
Nucleic Acids and Oligonucleotides .. FP 572; FP 590; FP 591; FP 592
Peptidomics .. FP 607.5; FP 609
Polymers .. FP 626
Proteins: PTMs .. FP 660
Proteomics: Clinical Applications .. FP 672
Proteomics: Top Down Analysis .. FP 721.5
Single Cell MS .. FP 733

Art, Archaeology & Paleontology (REMOTE POSTERS)

FP 040 Oil paints: identification of siccative oil and cross-links from museum size sample by chemical depolymerization and ultra-high resolution mass spectrometry; Caterina Bordin1; Ziad Mahmoud1; Anais Genty-Vincent2, 3; Fabrice Bray1; Marie-Amélie Senot4; Michel Menu1, 3; Christian Rolando1, 5; 1Miniaturization for Synthesis, Analysis & Proteomics, USR 3290, CNRS, University of Lille, Villeneuve d'Ascq, France; 2Centre de Recherche et de Restauration des Musées de France (C2RMF), Paris, France; 3Chimie-ParisTech, PSL, Institut de Recherche de Chimie-Paris (IRCP), Paris, France; 4LaM, Lille Métropole Musée d'art moderne, d'art contemporain et d'art brut, Villeneuve d'Ascq, France; 5Shrieking Sixties, 1-3 Allée Lavoisier, Villeneuve d'Ascq, France

FP 041 Non-destructive proteomics of archaeological and palaeontological bones based on tape strip sampling; Fabrice Bray1; Stéphanie Flament1; Tarek Oueslati2; Christian Rolando1; 1MSAP USR 3290, villeneuve d'ascq, France; 2HALMA - UMR 8164, VILLENEUVE D ASCQ, France

Artificial Intelligence in MS Instrumentation and Applications (REMOTE POSTERS)

FP 047 MAGPIE: A machine learning approach for confidence assessment of protein-protein interactions in human plasma; Emily Hashimoto-Roth1; Diane Forget2; Vanessa Gaspar2; Steffany A. L. Bennett1; Marie-Soleil Gauthier1, 3; Benoit Coulombe2, 3; Mathieu Lavallée-Adam1; 1University of Ottawa, Ottawa, ON; 2Institut de recherches cliniques de Montréal, Montreal, QC; 3Université de Montréal, Montréal, QC

Biomarkers: Discovery (REMOTE POSTERS)

FP 056 Nanoparticle-based method identifies 2200 proteins in a cardiovascular disease study covering known biomarkers among other differentially expressed proteins; Michael Burgess1; Hasmik Keshishian1; Michelle Dubuke1; Juan Cruz Cuevas2; Laurie Farrell3; Debby Ngo3; Karsten Krug1; Dr Mani1; Robert Gerszten1; Steven A Carr1; 1Broad Institute of MIT and Harvard, Cambridge, MA; 2Seer Inc., Redwood City, CA; 3Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA

Biomolecular Structure Analysis: Chemical Crosslinking and Covalent Labeling (REMOTE POSTERS)

FP 077 Can Overlabeling with DEPC Give Correct Protein Structural Information?; Zachary J Kirsch1; Richard W. Vachet1; 1University of Massachusetts Amherst, Amherst, MA

Cannabis (REMOTE POSTERS)

FP 082 Analysis of Cannabinoids in Milk from Cows Consuming Spent Hemp using Ultra High-Performance Liquid Chromatography-Tandem Mass Spectrometry; Daniel G Nosal1, 2; Massimo Bionaz3; Ruth N. Muchiri2; Richard B van Breemen1, 2; 1Voynich Biosciences, Corvallis, OR; 2Oregon State University, Corvallis; 3Oregon State University, Corvallis, OR

FP 083.5 ICP-MS Analysis of Cannabis Sativa Containing Food Products Using a Novel CRM Heavy Metal Mix (As, Cd, Hg and Pb); Stephan Altmaier; Merck KGaA, Darmstadt, Germany
Clinical Analysis (REMOTE POSTERS)

FP 096 Reducing the False Positive of Isovaleric Acidemia in Newborn Screening using Flow Injection Analysis-Tandem Mass Spectrometry; Takanari Hattori; Misa Tanaka; Yoshitomo Notsu; Miki Matsui; Tetsuo Iida; Jun Watanabe; Hironori Kobayashi; Shimadzu, Kyoto, Japan; Shimane University Faculty of Medicine, Izumo, Japan

Data-Independent Acquisition (REMOTE POSTERS)

FP 107.5 Rapid proteome analysis using DIA and super-resolution Orbitrap mass spectrometry; Sophia Steigerwald; Lili Niu; Kyle Fort; Arne Kreutzmann; Daniel Marc Mourad; Konstantin Aizikov; Dmitry Grinfeld; Alexander Makarov; Florian Meier; Matthias Mann; 1Max-Planck Institute of Biochemistry, Planegg, Germany; 2Novo Nordisk Foundation Center for Protein Research – University of Copenhagen, Copenhagen, Denmark; 3Thermo Fisher Scientific (Bremen) GmbH, Bremen, Germany; 4University Hospital Jena, Jena, Germany

FP 110 Leveraging a Higher Duty Cycle DIA Acquisition On a Novel QTOF for Enhanced Proteomics Analysis; Ihor Batruch; Yves Leblanc; Jason Causon; Naomi Diaz; Tatjana Talamantes; Anjali Chelur; Nic G. Bloomfield; Stephen Tate; Jose Castro-Perez; SCIEX, Concord, ON; 2SCIEX, Framingham, MA

FP 113 Staggered windows TOF-DIA: a new approach to the high-throughput proteome analysis of hepatic insulin resistance; Mauro Galli; Arkadiusz Zbikowski; Agnieszka U. Blachnio-Zabielska; Hady Razak Hady; Piotr Zabielski; Department of Medical Biology, Medical University of Bialystok, Bialystok, Poland; 2Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland; 31st Clinical Department of General and Endocrine Surgery, Medical University of Bialystok, Bialystok, Poland

Environmental: General (REMOTE POSTERS)

FP 157 Trace Analysis of Per- and Polyfluoroalkyl Substances (PFAS) using LC-MS/MS and Automated Solid Phase Extraction (SPE) in Aqueous Matrices; Renee N.G Huang; Stephen Tersigni; Surjit Saini; Santa Clara Valley Water District, San Jose, CA

Environmental: Pharmaceuticals and Pesticides (REMOTE POSTERS)

FP 171 Water analysis platform: LC/MS/MS screening of 325 PPCP contaminants in tap and surface water; Aurore Jaffuel; Watanabe Jun; SHIMADZU Corporation, MS Business Unit, Kyoto, Japan., Kyoto, Japan

Epigenetic Modifications (REMOTE POSTERS)

FP 176 Combining histone PTM analysis with chromatin immunoprecipitation and next-generation sequencing to gain insight into the biological function of histone propionylation; Michael Nshanian; Benjamin Geller; Joshua Gruber; Jeannie Marie Camarillo; Jaison Arivalagan; Young Ah Goo; Juliette Andria Morris; Neil L Kelleher; Michael P Snyder; 1Department of Genetics, Stanford University, School of Medicine, Stanford, CA; 2Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL; 3Center for Genomics and Personalized Medicine, Stanford Univeristy School of Medicine, Stanford, CA

Food Safety & Chemistry: Foodomics, Allergens, Bacteria, Foods, and Supplements (REMOTE POSTERS)

FP 193 A multidisciplinary approach of non-targeted screening, proteomics, and genome skimming to discover the cause of foodborne illness; Ann M Knolhoff; Melinda A McFarland; Sara M Handy; John B Mangrum; Jennifer L Fong Sam; Timothy R Crole; John H Callahan; FDA, College Park, MD

Food Safety: General (REMOTE POSTERS)

FP 208 Dilute & Shoot Analysis of Aflatoxins in Dried Fruits; Li Sheng; Haiying Wu; Janice Yanlan Chan; Burton Tsang; Derek Wong; Simon Cowell; 1Canadian Food Inspection Agency (CFIA), BURNABY, BC

FP 210 A practical lock-mass calibrant introduction method for the Q-Exactive to achieve improved identifications in non-targeted analyses; Christine M Fisher; Shannon E Murphy; Ann M Knolhoff; 1FDA Center for Food Safety, College Park, MD

WEDNESDAY, NOVEMBER 17, 12:00 – 1:30 PM EASTERN
Forensics (REMOTE POSTERS)

| FP 222 | MARLOWE: An Untargeted Proteomics, Statistical Approach to Classification for Forensics; Sarah C. Jenson¹; Fanny Chu¹; Natalie C. Heller¹; Dustin L. Crockett¹; Eric D. Merkley¹; Kristin H. Jarman¹; "Pacific Northwest National Laboratory, Richland, WA |

Fundamentals: Ion Structure/Energetics (REMOTE POSTERS)

| FP 236 | Fimsbactin and Analogs: Bonding of Felli to Form Complexes to Scavenge Iron; Daryl Giblin¹; Luting Fang¹; Tabbetha Bohac¹; Victoria S. Banas¹; Michael Gross¹; Timothy Wencewicz¹; "Washington University, St Louis, MO |

Glycoproteins (REMOTE POSTERS)

| FP 267 | Virus-Receptor Interactions of Glycosylated SARS-CoV-2 Spike and Human ACE2 Receptor; Peng Zhao¹; Jeremy L Praissman¹; Oliver Grant¹; Yongfei Cai²; Tianshu Xiao³; Katelyn E Rosenbalm¹; Kazuhiro Aoki¹; Benjamin P Kellman³; Dan H Barouch⁴; Nathan E Lewis³,⁵; Michael Tiemeyer¹; Bing Chen⁵; Robert J Woods¹; Lance Wells¹; "Complex Carbohydrate Research Center, University of Georgia, Athens, GA; "Division of Molecular Medicine, Children’s Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA; "Departments of Pediatrics and Bioengineering, University of California, San Diego, La Jolla, CA; "Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; "Novo Nordisk Foundation Center for Biosustainability at University of California, San Diego, La Jolla, CA |

| FP 272 | Automatic MS-based N-linked and O-linked Glycopeptide Characterization with PEAKS GlycanFinder; Weiping Sun¹; Xiaodong Wei¹; Xiyue Zhang¹; Hui Li¹; Baozhen Shan¹; "Bioinformatics Solutions Inc, Waterloo, ON |

| FP 276 | N-glycosylation of EpCAM in breast cancer metastasis; Nicole M Jenkinson¹; Caitlin Tressler¹; Elizabeth Gordon²; Zheqiong Tan¹; Xinyi Elaine Shen¹; Kristine Glunde¹,³,⁴; Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland; "Bruker Daltonics, Billerica, Massachusetts; "Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; "Department of Biological Chemistry, The Johns Hopkins School of Medicine, Baltimore, MD |

Imaging MS: Disease Markers (REMOTE POSTERS)

| FP 301 | Parasite-host interactions of unicellular and multicellular organisms, visualized by high-resolution AP-SMALDI MSI; Katja R Wiedemann¹; Alejandra Peter Ventura¹; Stefanie Gerbig¹; Martin Roderfeld²; Elke Roeb³; Thomas Quack³; Christoph G Greveling³; Liliana M R Silva⁵; Carlos R Hermosilla³; Anja Taubert⁵; Kerstin Strupat⁴; Bernhard Spengler¹; "Institute of Inorganic and Analytical Chemistry, Justus Liebig University, Giessen, Germany; "Gastroenterology, Justus Liebig University, Giessen, Germany; "Institute of Parasitology, Justus Liebig University, Giessen, Germany; "Thermo Fisher Scientific (Bremen) GmbH, Bremen, Germany |

| FP 302 | An integrated MS strategy using high-resolution AP-MALDI-MSI and UHPLC-MRM to investigate brain cholesterol metabolism in Huntington’s Disease mouse model; Alice Passoni¹; Angela Marika Siciliano¹; Alessia Lanno¹; Laura Colombo¹; Monica Favagrossa¹; Mario Salmona¹; Renzo Bagnati¹; Enrico Davoli¹; "Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy |

| FP 303 | Highly-Multiplexed and Multioic Mass Spectrometric Imaging with Photocleavable Mass-Tags; Gargey B. Yagnik¹; Ziying Liu¹; Kenneth J. Rothschild¹,²; Mark J. Lim¹; "AmberGen, Inc., Watertown, MA; "Boston University, Boston, MA |

Imaging MS: Instrumentation (REMOTE POSTERS)

| FP 305 | Benefits of high resolution ion mobility separation on the Cyclic IMS for DESI mass spectrometry imaging; Susan E Slade¹; Ludovic Muller²; Nivedita Hegdekar³; Chinmoy Sarkar³; Marta M Lipinski³; Maureen Kane²; Emmanuelle Claude¹; "Waters Corporation, Wilmslow, United Kingdom; "Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD; "Department of Anaestheiology, }
Imaging MS: Pharmaceuticals, Metabolites, and Lipids (REMOTE POSTERS)

FP 334
Zebrafish larvae as toxicity model for drug development using imaging mass spectrometry; Junhai Yang¹; James Sawicki²; Nari N Talaty²; Steven Cassar³; Wayne Buck²; David Wagner²; ¹Abbvie Inc, Waukegan, IL; ²AbbVie, North Chicago, IL

Imaging MS: Sample Preparation (REMOTE POSTERS)

FP 344
Quantitative Investigation of Matrix Spraying Parameters for MALDI Mass Spectrometry Imaging Using Factorial Design and Automated Measurements of Delocalization; Nathaniel C Riemann¹; Caitlin Tressler¹; Sloane Tilley²; Christopher Donohue¹; Eric Barton¹; Jason Fan¹; Ethan Yang¹; Alain Creissen²; Kristine Glunde¹, ³, ⁴; ¹Johns Hopkins University School of Medicine, Baltimore, MD; ²HTX Technologies, LLC, Chapel Hill, NC; ³Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; ⁴Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Baltimore, Maryland

Informatics: Algorithms and Statistical Advances (REMOTE POSTERS)

FP 350
MS1Connect: a mass spectrometry run similarity measure; Andy Lin¹; Janine Hutchison¹; Brooke Deatherage Kaiser¹; Jeffrey Balmes²; William Noble²; ¹Pacific Northwest National Laboratory, Richland, WA; ²University of Washington, Seattle, WA

Informatics: Metabolomics (REMOTE POSTERS)

FP 360
Automated GC-MS Chromatogram Alignment for Metabolomic Compound Identification; Anastasiya V. Prymolenna¹; Yuri E. Corilo¹; Robert E. Danczak²; Chaeven S. Clendinen¹; Lee Ann Mccue¹; ²Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA; ³Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA

Informatics: Peptide ID and Quantification (REMOTE POSTERS)

FP 369
Next-generation library searching for DDA experiments using Scribe; Brian C. Searle¹, ²; Damien Beau Wilburn¹; ¹The Ohio State University, Columbus, OH; ²Proteome Software, Portland, OR

Instrumentation: General (REMOTE POSTERS)

FP 388
New high voltage power supplies for triple quadrupole MS polarity switching in under 5 ms; Oleg Silivra¹; Harald Oser¹; Michael Ugarov¹; David Minkler¹; Claudia Martins¹; Neloni Wijeratne¹; ¹Thermo Fisher Scientific, San Jose, CA

Instrumentation: New Developments in Mass Analyzers (REMOTE POSTERS)

FP 414
Teaching an old geometry new tricks: Poschenrieder for Charge Detection Mass Spectrometry (CDMS); John B Hoyes¹; Gavin Wray¹; ¹TrueMass, Rowarth, United Kingdom

Ion Mobility: Applications (REMOTE POSTERS)

FP 432
Comparison of small agrochemical isobars across various ion mobility spectrometry mass spectrometry (IMS-MS) systems; Chris J Brown¹; Sarah Dowd²; Dale Cooper-Shepherd¹; Nick Wang¹; Yelena Adefinskaya¹; David Mccaskill¹; Chelsea Plummer²; Jesse L Balcer¹; Erin Gemperline¹; Jeffrey R Gilbert¹; ¹Corteva Agriscience, Indianapolis, IN; ²Waters Corp, Milford, MA; ³Waters, Wilmslow, United Kingdom

Ion Mobility: Fundamentals (REMOTE POSTERS)

FP 446
Collision cross sections of polyoxometalate anions and determination of Lennard-Jones interaction parameters of Mo and W in He and N2; Sébastien Hupin¹; Vincent Tognetti¹; Séverine Renaudineau²; Anna Proust²; Guillaume Izzet²; Frederic Rosu³; Valérie Gabelica³; Carlos Afonso³; Helene Lavanant¹; ¹Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France, Mont St Aignan, France; ²Sorbonne Université, CNRS, UMR 8232, Institut Parisien de Chimie Moléculaire, PARIS, France; ³CNRS, University of Bordeaux and INSERM, Institut Européen de Chimie et Biologie (IECB, UMS3033, US001), Pessac, France;
Ion Mobility: General (REMOTE POSTERS)

FP 449 High-precision, high-resolution ion mobility: how standardizing relative mobilities can push the frontiers of isomer-specific assays; Alice Martynova\(^1\); Addison E. Roush\(^1\); Benjamin Zercher\(^1\); Emily L. Pruitt\(^1\); Tatjana Talamantes\(^2\); Jessica Perez\(^2\); Daniel Debord\(^3\); Nathan Roehr\(^2\); Grego Van Aken\(^2\); Gordon A. Anderson\(^3\); Miklos Gutman\(^1\); Libin Xu\(^1\); Matthew F. Bush\(^1\); \(^1\)University of Washington, Seattle, WA; \(^2\)MOBILion Systems, Chadds Ford; \(^3\)GAA Custom Electronics, LLC, Kennewick, WA

LC/MS: Chromatography and Software (REMOTE POSTERS)

FP 461.5 A Hybrid Stationary Phase of Ion-Exchange and Hydrophilic Interaction Chromatography for the LC/MS of Polar Compounds; Xiaoning Lu\(^1\); Shun-Hsin Liang\(^2\); \(^1\)Restek Corporation, Bellefonte, PA; \(^2\)Restek, Bellefonte, PA

LC/MS: Sample Preparation (REMOTE POSTERS)

FP 480 The utility of nanoparticle protein coronas for studying the plasma glycoproteome; Gary Wilson\(^1\); Sangtae Kim\(^1\); Shadi Ferdosi\(^2\); Marshall W Bern\(^1\); \(^1\)Protein Metrics, Inc., Cupertino, CA; \(^2\)Seer, Redwood City, California

Metabolomics: Targeted and Quantitative Analysis (REMOTE POSTERS)

FP 542 Fast diagnosis of methylmalonic academia based on DMS-MS; Chiraz El Saddik\(^1\); Eskander Alhajji\(^1\); Fathi Moussa\(^1\); Jean-François Benoist\(^2, 3\); Philippe Maître\(^1\); \(^1\)Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, ORSAY, France; \(^2\)Université Paris-Saclay, Faculté de Pharmacie, Châtenay-Malabry, France; \(^3\)Hôpital Necker Enfants Malades, Paris, France

Metabolomics: Untargeted Metabolite Profiling (REMOTE POSTERS)

FP 553 LCMS based spatial metabolomics identifies metabolites altered by Influenza Virus (IAV) infection in plasma and lung tissue; Danya A Dean\(^1\); London Klechka\(^1\); Myron Hinsdale\(^2\); Krystin Eaton\(^2\); Adwaita Parab\(^1\); Ekram Hossain\(^1\); Laura-Isobel McCall\(^1\); \(^1\)University of Oklahoma, NORMAN, Oklahoma; \(^2\)Oklahoma State University, Stillwater, Oklahoma

FP 554 The Core Human Fecal Metabolome; Jacob J Haffner\(^1, 2\); Mitchellte Katemauswa\(^2, 3\); Thérèse S Kagone\(^4, 5\); Ekram Hossain\(^2, 3\); David Jacobson\(^1, 2\); Karina Flores\(^2, 6\); Adwaita Parab\(^2, 7\); Alexandra J Obregon-Tito\(^1, 2\); Raul Y Tito\(^1, 2\); Luis Marin Reyes\(^8\); Luzmila Troncoso-Corzo\(^9\); Emilio Guija-Poma\(^10\); Nicolas Meda\(^1\); Hélène Carabin\(^11, 12, 13, 14\); Tanvi P Honap\(^1, 2\); Krithivasan Sankaranarayanan\(^2, 7\); Cecil M Lewis Jr\(^1, 2\); Laura-Isobel McCall\(^2, 3, 7\); \(^1\)Department of Anthropology, University of Oklahoma, Norman, OK; \(^2\)Labsoratories of Molecular Anthropology and Microbiome Research (LMAMR), University of Oklahoma, Norman, OK; \(^3\)Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK; \(^4\)Burkina Faso Ministry of Health, Ouagadougou, Burkina Faso; \(^5\)Centre MURAZ Research Institute, Bobo-Dioulasso, Burkina Faso; \(^6\)Department of Biology, University of Oklahoma, Norman, OK; \(^7\)Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK; \(^8\)Instituto Nacional de Salud, Lima, Peru; \(^9\)Facultad de Medicina, Universidad Nacional Mayor de San Marcos, Lima, Peru; \(^10\)Centro de Investigación de Bioquímica y Nutrición, Facultad de Medicina Humana, Universidad de San Martín de Porres, Lima, Peru; \(^11\)Department of Biostatistics and Epidemiology, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK; \(^12\)Département de Pathologie et Microbiologie, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC; \(^13\)Département de médecine sociale et préventive, École de santé publique de l’université de Montréal, Montréal, Quebec, Canada; \(^14\)Centre de Recherche en Santé Publique de l’université de Montréal et du CIUSS du Centre Sud de Montréal, Montréal, QC

FP 556 Visceral leishmaniasis impact on local; Mahbobeh Lesani\(^1\); Andrea Paun\(^2\); Michael Lewis\(^3\); Laura-Isobel McCall\(^4\); \(^1\)University of Oklahoma, Norman, OK; \(^2\)National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD; \(^3\)London School of Hygiene and Tropical Medicine, London, United Kingdom; \(^4\)University of Oklahoma, Norman, OK

WEDNESDAY, NOVEMBER 17, 12:00 – 1:30 PM EASTERN
FP 557 How the urinary metabolome of hospitalized COVID-19 patients with and without acute kidney injury led to improved metabolomics analysis; Stephen Barnes¹; Landon S. Wilson¹; Taylor F. Berryhill¹; Jeffrey C. Edberg¹; Nathaniel H. Raines²; Samir Parikh³; ¹University of Alabama at Birmingham, Birmingham, AL; ²Harvard Medical School, Boston, MA; ³Harvard Medical School, Boston, Massachusetts

Natural Products (REMOTE POSTERS)

FP 567 Investigation of the antibacterial activity against foodborne pathogens and chemical composition of Psidium guajava extract and partitions; Angela I Calderon¹; Audrey M Hall¹; Swati Baskiyar¹; Michelle D Hayden¹; Emefa Monu¹; ¹Auburn University, Auburn, AL

Nucleic Acids and Oligonucleotides (REMOTE POSTERS)

FP 572 Ultra-sensitive quantification of oligonucleotides in plasma using microflow LC-MS/MS; Lijuan Kang¹; Yanping Lin¹; Wenyeng Jian¹; Lieve Dillen²; Remco van Soest³; Eshani Nandita⁴; ¹Janssen Research & Development, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, PA; ²Janssen Research & Development, The Janssen Pharmaceutical Companies of Johnson & Johnson, Springhouse, PA; ³Janssen Research & Development, The Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium; ⁴Sciex, Redwood City, CA

FP 590 Rapid Screening of Megadalton Native mRNA and dsDNA using Charge-Reduced Ion Mobility Spectrometry; Ananya Dubey Kelsoe¹; W. Henry Benner¹; Jared Clark¹; ¹IonDX Inc., Monterey, CA

FP 591 Development of Ex Vivo Stress Models to Predict In Vivo Stability of Oligonucleotides and Associated Delivery Strategies; Phillip Chu¹; Neelie Zacharias¹; Sumit Mahajan¹; Chun-wan Yen¹; Hao Cai¹; Craig Blanchette¹; Baris Bingol¹; Cong Wu¹; ¹Genentech Inc., South San Francisco, CA

FP 592 Development and Validation of a Paired-Ion Gradient UHPLC Triple Quadrupole Method for a Synthetic Oligonucleotide in Human Plasma and Feces; Alan M Dzerk¹; Patrick S Miller¹; Sarajlic Emina¹; Chris J Kafonek¹; Nachi Ridha¹; ¹Celerion, Inc, Lincoln, NE

Peptidomics (REMOTE POSTERS)

FP 607.5 Validation of Mild Acid Elution of MHC Class II Immunopeptides from Antigen Presenting Cells for Vaccine Development; Teesha C. Luehr¹, ²; Leonard J. Foster¹, ²; ¹University of British Columbia, Vancouver, BC; ²Michael Smith Laboratories, Vancouver, BC

FP 609 MHC Associated Peptide Proteomics (MAPPs) using an automated tip-based workflow on the Agilent AssayMAP Bravo; Jason Lamar¹; Violet Lee¹; Sylvia Wong¹; Lynn Kamen¹; Peter Tran¹; Ben Ordonia¹; Shan Chung¹; Surinder Kaur¹; Ola M Saad¹; ¹Genentech, So. San Francisco, CA

Polymers (REMOTE POSTERS)

FP 626 Solvent-less thermal extraction to detect volatile extractables from medical device materials; Milani R Wijeweera Patabandige¹; Keaton S Nahan¹; Berk Oktem¹; Eric M Sussman¹; Byeonghwa Yun¹; Samanthi Wickramasekara¹; ¹FDA, College Park, MD

Proteins: PTMs (REMOTE POSTERS)

FP 660 Histone Analysis using LC-TIMS-PASEF-MS/MS; Cassandra N. Fuller¹; Khoa N. Pham¹; Mario E. Gomez Hernandez¹; Natarajan V. Bhanu²; Benjamin A. Garcia²; Francisco A. Fernandez-Lima³; ¹Department of Chemistry and Biochemistry, Florida International University, Miami, FL; ²Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA

Proteomics: Clinical Applications (REMOTE POSTERS)

FP 672 Developing the Mass Spectrometry-Based Multi-omics Technologies for Exploring the Energy Metabolism Pathways of Renal Cancer and Clinical Applications; Yi-Ting Chen¹; Wei-Ju Tu¹; Chien-Lun Chen¹; ¹Chang Gung University, Taoyuan, Taiwan; ²Chang Gung Memorial Hospital, Taoyuan, Taiwan

Proteomics: Top Down Analysis (REMOTE POSTERS)

FP 721.5 Characterization of hemoglobin variants by chimeric ion-loaded top-down mass spectrometryand R scripts based on diagnostic ions; Yuan Lin¹; Lissa C. Anderson¹; Archana M. Agarwal³, ⁴; Alan G. Marshall¹, ²;
Single Cell MS (REMOTE POSTERS)

FP 733 Single cell mass spectrometry metabolomic studies of primary and metastatic cancer cells; Tra D Nguyen1; Zhibo Yang1; 1University of Oklahoma, Norman, OK