ASMS Short Course

Top-Down Proteomics

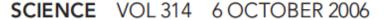
Instructors: Ying Ge, Neil Kelleher, Joseph Loo, Ljiljana Paša-Tolić

Top: measuring intact protein molecular mass

Down: fragmentin

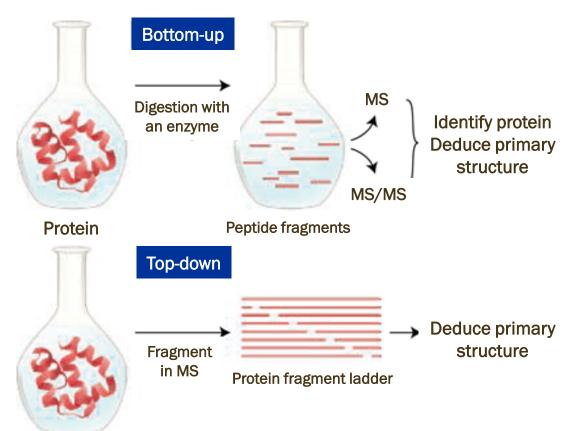
"Front-end"
Separation of
Intact Proteins

"Middle-part"
Mass Spectrometry
Analysis of intact
Proteins


"Back-end"
Informatics for
Identification and
Characterization
of Intact proteins

Topics to Be Covered

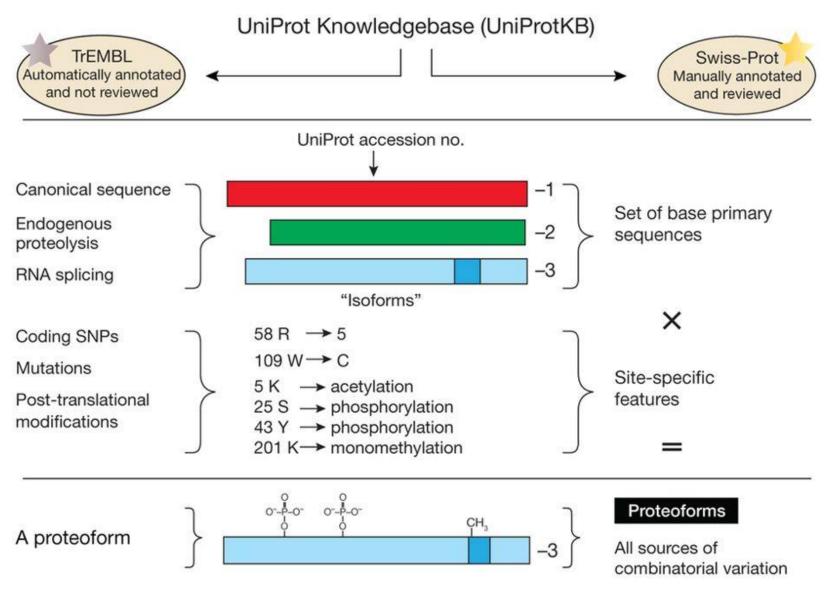
- Introduction
 - History of top-down proteomics
 - **Concept of proteoforms**
 - **Measurement of Proteoforms and their complexes**
 - Denatured vs. native mode
- Sample preparation
- Intact protein separation
- Instrumentation, activation and dissociation methods for top-down MS
- Comparison of bottom-up and top-down pros and cons
- Data interpretation and software tools for top-down proteomics
- Top-down quantitative proteomics including experimental design
- Biomedical and biopharmaceutical applications of top-down MS
- Future outlook



Mass Spectrometry: Bottom-Up or Top-Down?

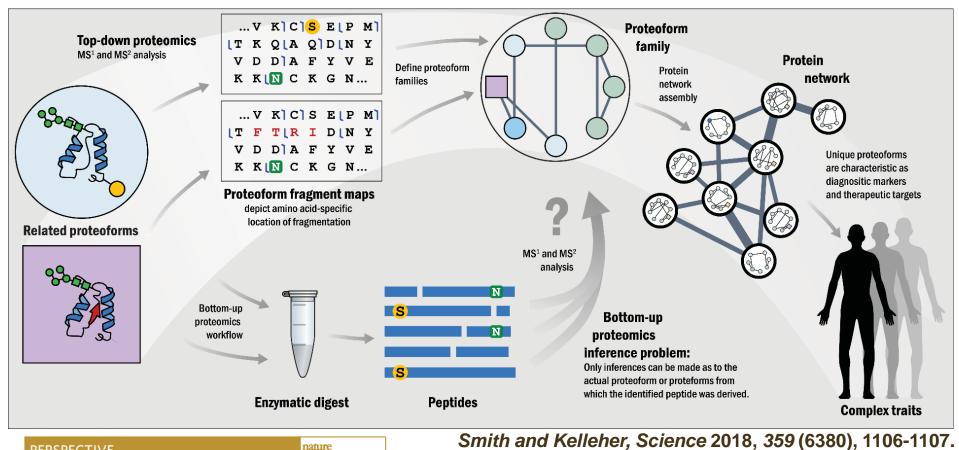
Brian T. Chait

Protein


The bottom-up approach is (therefore) suboptimal for determining modifications and alternative splice variants.

In the top-down approach...if a sufficient number of informative fragment ions are observed, this analysis can provide a complete description of the primary structure of the protein and reveal all of its modifications, as well as any correlations that exist between these modifications.

Concept of Proteoforms

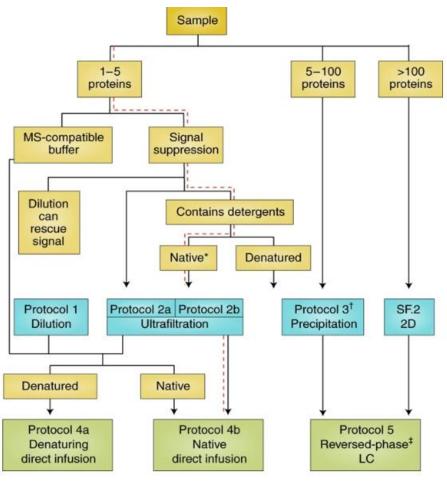

Proteoform: a single term describing protein complexity

Smith, Kelleher & Consortium for Top-Down Proteomics. Nat Methods 2013, 10 (3), 186-7.

Proteoforms as a New "Currency" in Proteomics

How many human proteoforms are there?

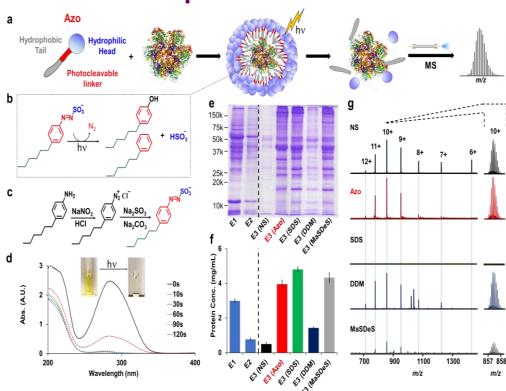
PERSPECTIVE


Ruedi Aebersold¹, Jeffrey N Agar², I Jonathan Amster³0, Mark S Baker⁴0, Carolyn R Bertozzi⁵, Emily S Boja6, Catherine E Costello7, Benjamin F Cravatt80, Catherine Fenselau9, Benjamin A Garcia10, Ying Ge11,12, Jeremy Gunawardena13, Ronald C Hendrickson14, Paul J Hergenrother15, Christian G Huber160, Alexander R Ivanov², Ole N Jensen¹⁷, Michael C Jewett¹⁸, Neil L Kelleher¹⁹*®, Laura L Kiessling²⁰®, Nevan J Krogan²¹, Martin R Larsen¹⁷, Joseph A Loo²², Rachel R Ogorzalek Loo²², Emma Lundberg^{23,24}, Michael J MacCoss²⁵, Parag Mallick⁵, Vamsi K Mootha¹³, Milan Mrksich¹⁸, Tom W Muir²⁶, Steven M Patrie¹⁹, James J Pesavento²⁷, Sharon J Pitteri⁵, Henry Rodriguez⁶, Alan Saghatelian²⁸, Wendy Sandoval²⁹, Hartmut Schlüter³⁰, Salvatore Sechi³¹, Sarah A Slavoff³², Lloyd M Smith^{12,33}, Michael P Snyder²⁴, Paul M Thomas¹⁹, Mathias Uhlén³⁴, Jennifer E Van Eyk³⁵, Marc Vidal³⁶, David R Walt³⁷, Forest M White³⁸, Evan R Williams³⁹, Therese Wohlschlager¹⁶, Vicki H Wysocki⁴⁰, Nathan A Yates⁴¹, Nicolas L Young⁴² & Bing Zhang⁴²

chemical biology

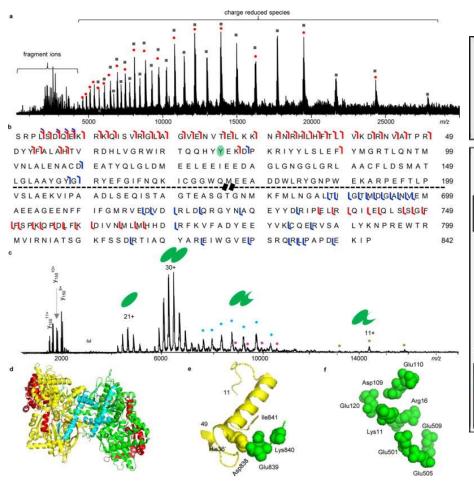
Human Isoforms Site-specific features **Proteoforms** gene Coding SNP mRNA 1 Glycosylation Phosphorylation

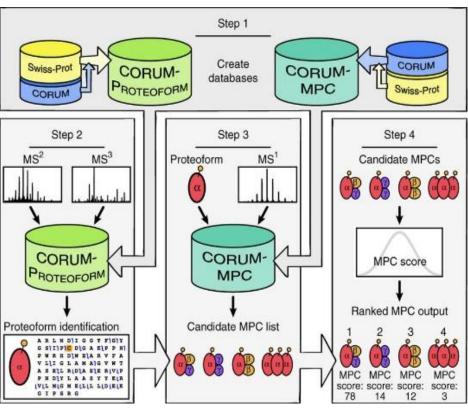
Sample Preparation in Top-down Proteomics



Best Practices and Benchmarks for Intact protein Analysis for Top-down Mass Spectrometry

Donnelly et al. *Nature Methods*. 2019, 16, 587-594


Brown et al. Nature Methods 2019, 16,


Consortium for Top-Down Proteomics

417-420

Native Top-down Proteomics

Skinner et al. Nat. Methods 2016, 13, 237

Li et al. Nature Chemistry, 2018, 10, 139

Integrated Native Mass Spectrometry and Top-Down Proteomics -Connect Sequence to Structure and Function of Macromolecular Complexes

Software Tools Available for Top-down Proteomics

ProSight PTM https://prosightptm2.northwestern.edu/

AS MS

ProSightPC™https://www.thermofisher.com/order/catalog/product/PROSIGHT PC10

Mash Suite Pro: http://crb.wisc.edu/yinglab/software.html

MASH Explorer: http://ge.crb.wisc.edu/MASH_Explorer/index.htm

MS-Align+: http://bix.ucsd.edu/projects/msalign/

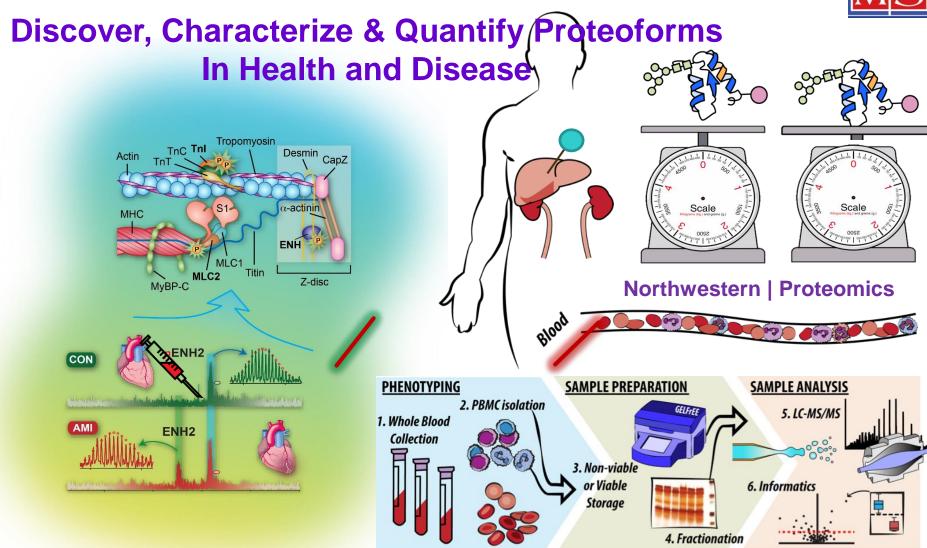
TopPIC: http://proteomics.informatics.iupui.edu/software/toppic

MSPathFinder: https://omics.pnl.gov/software/mspathfinder

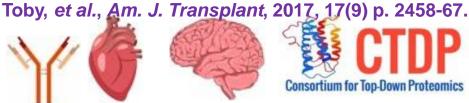
Informed Proteomics: https://github.com/PNNL-Comp-Mass-Spec/Informed-

Proteomics

Proteoform Suite: https://github.com/smith-chem-wisc/Proteof


pTop: http://pfind.net/software/pTop/index.html

http://www.topdownproteomics.org/resources/software/


Biomedical and Biopharmaceutical Applications

Peng, et al. Mol. Cell. Proteomics, 2014, 13, 2752-2764.

Conclusions & Outlook

- Measuring proteoforms directly: a major step in the evolution of mass spectrometry-based proteomics
- Top-down proteomics closes knowledge gaps by providing complete molecular specificity for proteins in wellness and disease
- Proteoform-resolved biology will increase efficiency of basic and translational research

