Protein Structural Analysis by Mass Spectrometry: Hydrogen Exchange and Covalent Labeling

John R. Engen (Northeastern University)
Thomas E. Wales (Northeastern University)
Mark R. Chance (Case Western Reserve University)
Janna Kisela (Case Western Reserve University)

Obtain information about protein conformation and structure by selectively labeling proteins in solution, then using mass spectrometry to locate the label

Day 1: Protein structure refresher, as applied to MS

Methods of covalent labeling

Day 2: Methods of hydrogen exchange mass spectrometry
What can be learned from Hydrogen Exchange (HX) Mass Spectrometry (MS)?

- Protein folding pathways
- Proper folding of proteins
- Structural information
 - those that cannot be crystallized
 - those too big for NMR
 - those that are hard to prepare/purify
- Protein dynamics
 - where structures are mobile
 - where structures change
 - complexes, epitope mapping
 - conformational changes during function, binding, activation, etc.

Continuous Labeling HX MS Experiment

Equilibration
native conditions
(temp, pH, buffer)

Labeling reaction

Wait: multiple labeling times
(secs to hours)

Quenched reaction
0 °C, pH 2.6

Digest into peptides
pepsin, 0 °C, pH 2.6

Labeled protein(s)

Digest into peptides
pepsin, 0 °C, pH 2.6

Labeled peptides

Deuterium uptake

Mass spectra,
isotope pattern information

Interpretation

Chromatography
Reversed-phase, 8-40% ACN in 6 min.
0°C ice bath, pH 2.6 (to maintain label)
What can be learned from Footprinting MS?

- Protein folding
- Structural information
 - macromolecular assemblies that can not be crystallized or too big for NMR
 - membrane proteins
 - proteins in various physiological conditions
 - interactions of bulk, bound, ordered water
- Protein Dynamics
 - changes in protein structure
 > binding interfaces, complexes
 > conformational changes during activation, ligand binding, function, etc.
 - water dynamics within the transmembrane region
 - structure of mobile protein regions

Footprinting MS Experiment

<table>
<thead>
<tr>
<th>X-ray/Fenton</th>
<th>H₂O → •OH</th>
</tr>
</thead>
</table>

Dose Response

MS/MS

LC-MS analysis

Fraction Unmodified

Abundance