Practical LC-MS method development and bioanalytical method validation
(Formerly “Introduction to GLP Regulations and Bioanalytical Method Validation by LC-MS/MS”)
Practical LC-MS method development and bioanalytical method validation
(Formerly “Introduction to GLP Regulations and Bioanalytical Method Validation by LC-MS/MS”)

Selectivity (α) impacts the separation most! unfortunately, it is the most difficult parameter to understand and predict.

If you fully understand this equation, you are a great chromatographer!
Practical LC-MS method development and bioanalytical method validation (Formerly “Introduction to GLP Regulations and Bioanalytical Method Validation by LC-MS/MS”)

Combination of LC with MS – a perfect marriage
Validation batch design for **A&P runs**

Prepare 3 runs in different days

<table>
<thead>
<tr>
<th>Calibration Standards Name</th>
<th>Replicate</th>
<th>Quality Control Samples Name</th>
<th>Replicate</th>
<th>Other Validation Samples Name</th>
<th>Replicate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>1</td>
<td>LLOQ</td>
<td>6</td>
<td>Pooled blank plasma</td>
<td>1</td>
</tr>
<tr>
<td>Level 2</td>
<td>1</td>
<td>QC1</td>
<td>6</td>
<td>Zero standard</td>
<td>1</td>
</tr>
<tr>
<td>Level 3</td>
<td>1</td>
<td>QC2</td>
<td>6</td>
<td>System verification sample</td>
<td>1</td>
</tr>
<tr>
<td>Level 4</td>
<td>1</td>
<td>QC3</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level 5</td>
<td>1</td>
<td>QC4</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level 6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level 7</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level 8</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level 9</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level 10</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

QC1 ≤ 3 × LLOQ
Practical LC-MS method development and bioanalytical method validation
(Formerly “Introduction to GLP Regulations and Bioanalytical Method Validation by LC-MS/MS”)

Accuracy and precision expressions

True = Actual = Theoretical = Nominal value

\[
\text{Accuracy} = \frac{\text{Determined Value}}{\text{True value}} \quad \text{100 ± 15%}
\]

\[
\text{Accuracy} = \text{bias/error/deviation/difference}
\]

\[
\frac{\text{Determined Value} - \text{True Value}}{\text{True value}} \times 100 \quad \pm 15\%
\]

Precision: RSD = CV (coefficient of variation)
Practical LC-MS method development and bioanalytical method validation
(Formerly “Introduction to GLP Regulations and Bioanalytical Method Validation by LC-MS/MS”)

Matrix effect and extraction recovery

\[ME = \frac{\#2 \text{ PkAr}}{\#1 \text{ PkAr}} \]

\[R = \frac{\#3 \text{ PkAr}}{\#2 \text{ PkAr}} \]

Stable isotopically labeled IS can compensate for extraction recovery and matrix effects
Case study (one run = Batch 1 + Batch 2)

Based on 2018 BMV acceptance
75% and a minimum of six standards (6/8 = 75%)
Both batches passed – each batch was processed individually
Practical LC-MS method development and bioanalytical method validation
(Formerly “Introduction to GLP Regulations and Bioanalytical Method Validation by LC-MS/MS”)

Decision tree for reporting re-assay results

- **One value?**
 - Yes: **<LLOQ?**
 - Yes: Report BQL
 - No: Report value
 - No: Calculate median
 - Median within 100 ±15% of at least one valid result?
 - Yes: Report value
 - No: Sample left and stable?
 - Yes: Reassay
 - No: Report NR