Development of an LC-MS/MS Method for the Quantification of Microcystins in Blue-Green Algal Dietary Supplements

Whitney L. Stutts, Christine H. Parker, and Stacey L. Degrasse

ASMS Environmental Working Group

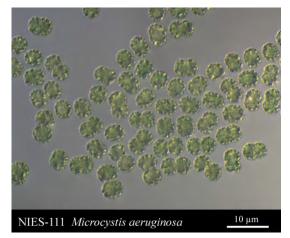
June 3, 2015

Blue-Green Algal Dietary Supplements & Microcystins

• Problem:

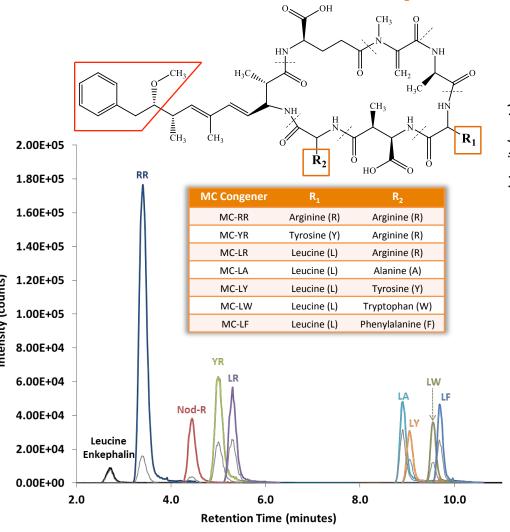
The cyanobacterium *Aphanizomenon flos-aquae* (AFA), which is harvested from natural lakes and commercially distributed as blue-green algal (BGA) dietary supplements, may be contaminated with toxic microcystins produced by cooccurring *Microcystis aeruginosa*.

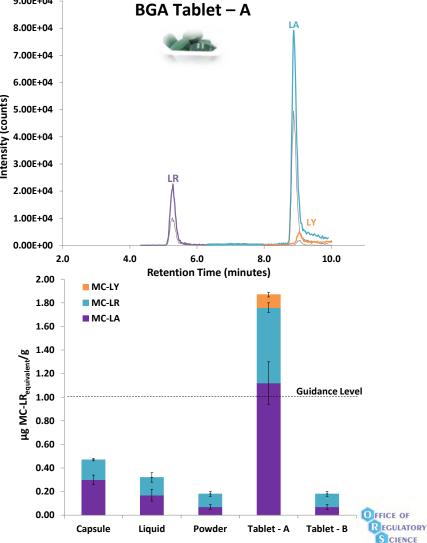
Regulation:


- No regulatory action level for microcystins (MC) in dietary supplements
- Oregon Health Division and Oregon Department of Agriculture: state guidance value of 1 μ g MC-LR_{eq}/g for microcystins in BGA products

Research Goal:

Develop and validate a selective LC-MS/MS method for the simultaneous detection and quantification of 7 MC congeners in AFA dietary supplements


http://www.oregonwild.org/waters/klamath/the-klamath-river/klamath-river-water-quality



http://www.shigen.nig.ac.jp/algae/strainDetailAction.do?stockNo=NIES-111

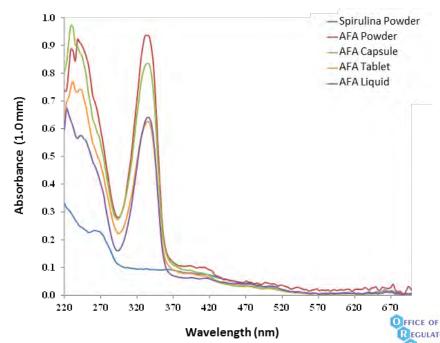
Quantitative LC-MS/MS Method Development

9.00E+04

Blue-Green Algal Supplement

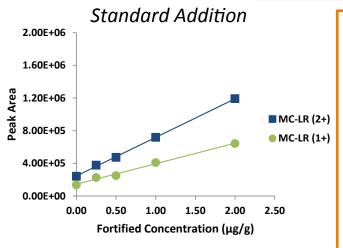
The Challenge of Finding a Matrix Blank

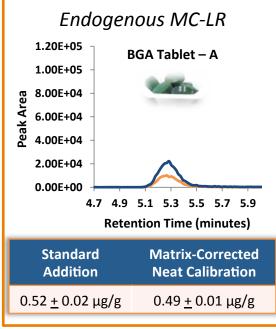
BGA supplements

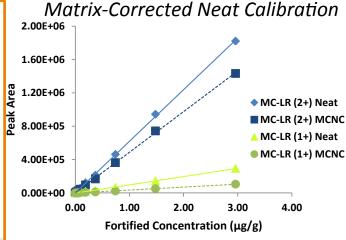

- AFA-based: detectable concentrations of MC in all supplements tested
- Spirulina-based: free of MC contamination, but not a suitable matrix blank

Congener	z	% Recovery [†] AFA	% Recovery [†] Spirulina	
MC-RR	2	65.1 <u>+</u> 0.6	53.2 <u>+</u> 1.0	
Nod-R	1	72.2 <u>+</u> 1.7	56.9 <u>±</u> 4.0	
MC-YR	1	54.9 <u>+</u> 1.5	17.2 <u>±</u> 0.4	
MC-YR	2	59.8 <u>+</u> 1.8	76.7 <u>+</u> 2.7	
MC-LR	1	67.7 <u>+</u> 1.7	31.2 <u>+</u> 1.6	
MC-LR	2	71.7 <u>+</u> 1.4	61.9 <u>±</u> 1.1	
MC-LA	1	77.2 ± 1.4	57.0 ± 2.2	
MC-LY	1	63.3 <u>+</u> 1.4	43.3 <u>+</u> 1.5	
MC-LW	1	50.0 <u>+</u> 1.4	25.0 <u>+</u> 1.4	
MC-LF	1	60.1 <u>+</u> 1.4	42.7 <u>+</u> 2.7	
Average		64.2 <u>+</u> 8.3	46.5 ± 18.2	
%RSD		13.0%	39.2%	

 $^{^{\}dagger}$ Peak areas were compared for biological replicates of pre- and post-fortified sample extracts at a 1 μ g/g spike concentration.


Problems with Spirulina


- Lower sample processing recoveries
- Possibly due to the absence of planar
 Mycosporine-like amino acids (MAAs)—
 accessory pigment molecules produced in cyanobacteria under high UV radiation



Solutions for Quantitation

Fortified Concentration (μg/g) MC-LR	Standard Addition % Recovery	Matrix-Corrected Neat Calibration %Recovery
2.00	100.1 <u>+</u> 3.7	97.4 <u>+</u> 3.6
1.00	100.1 <u>+</u> 1.0	97.9 <u>+</u> 1.4
0.50	95.9 <u>+</u> 6.0	94.8 <u>+</u> 6.1
0.25	111.3 <u>+</u> 1.6	111.6 <u>+</u> 4.3

Conclusions & Ongoing Challenges

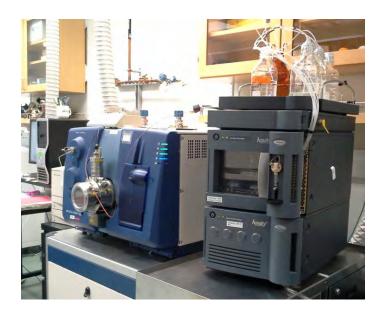
Microcystin Congener	AFA Capsule (µg/g)	AFA Liquid (µg/g)	AFA Powder (µg/g)	AFA Tablet Lot A (μg/g)	AFA Tablet Lot B (μg/g)
MC-LR	0.17 <u>+</u> 0.01	0.15 <u>+</u> 0.04	0.11 <u>+</u> 0.02	0.64 <u>+</u> 0.04	0.11 <u>+</u> 0.02
MC-LA	0.30 <u>+</u> 0.04	0.17 <u>+</u> 0.05	0.07 <u>+</u> 0.02	1.12. <u>+</u> 0.18	0.07 <u>+</u> 0.01
MC-LY	ND	ND	ND	0.11 <u>+</u> 0.02	ND
Total μg MC-LR _{eq} /g	0.47 <u>+</u> 0.04	0.32 <u>+</u> 0.06	0.18 <u>+</u> 0.03	1.87 <u>+</u> 0.19	0.18 <u>+</u> 0.02

ND = Not Detected

- 94 MC variants reported
 - Toxicities for all MC variants have not been determined
 - Chronic effects of exposure are unknown
 - Risk assessment data is needed before a regulatory level(s?) can be established
- Lot-to-lot variability poses a challenge for screening and regulation
- Isotopically labeled internal standards are not yet available, making accurate quantitation more challenging

Experimental

 Instrumentation: AB Sciex QTrap 5500 equipped with a Turbo V ionization source and a Waters


Acquity UPLC system

LC Parameters:

Acquity UPLC Column	BEH C18 (1.7 μm, 1.0 mm × 150 mm)
Column Temperature	40 °C
Injection Volume	2 μL

MS Parameters:

Source Temperature	400 °C
IonSpray Voltage	5000 V
Curtain Gas	20 psi
Gas 1	40 psi
Gas 2	30 psi

